TGFβ1 PREVIENE LA MUERTE POR APOPTOSIS INDUCIDA POR ESTRÉS DE RETÍCULO ENDOPLASMÁTICO EN LOS FIBROBLASTOS CARDIACOS DE RATAS NEONATAS

Memoria para optar al título de Químico Farmacéutico

ALAN GONZALO LETELIER VARGAS

Patrocinante : Dr. Guillermo Díaz-Araya.

Directores de tesis : Dr. Guillermo Díaz-Araya.

Dr. Sergio Lavandero.

Santiago, Chile 2008
AGRADECIMIENTOS

Quisiera partir agradeciendo al Dr. Guillermo Díaz, mi profesor, mi amigo, por haberme dado la oportunidad de trabajar en su laboratorio y por haber confiado en mí aunque las cosas no siempre funcionaron de lo mejor. Gracias por ayudarme a perseverar en lo que más me apasiona y me llena, la ciencia.

Este trabajo y todos los años de estudio, no pudieron haberse logrado sin el apoyo fundamental de mi familia, tanto mis padres (Juan y Alejandra) como mi hermana (Brenda), que durante años sacrificaron muchas cosas para poder verme feliz y verme llegar a este momento, es por eso que les agradezco desde el fondo del alma haber convertido un niño en un hombre con años de esfuerzo, dedicación y por sobre todo mucho amor. No puedo olvidarme de mis amigos, de mis verdaderos amigos, “la comunidad de la zopi” (Smiky, Cote, Steph), ya que su apoyo fue fundamental en cada paso que di dentro de la universidad, gracias por no dejarme caer y por estar conmigo en las buenas y en las malas, por entenderme y aguantarme y, por sobre todo, gracias por su amistad. No dejaré de mencionar a una persona muy especial para mí, mi polola Jessica, que pese a haber llegado al final del ciclo, llegó en el momento más importante y más difícil, el final de todo, llenando mi vida de luz.

Junto a lo anterior, quiero agradecer a mis compañeros de laboratorio, “los fibros”, que más que compañeros los siento como amigos, Raúl, Pancha, Miguel, Pablo, Daniel, Pedro, por haber dedicado parte de su valioso tiempo a enseñarme y conducir mis primeros pasos en la ciencia sin pedir nada a cambio. También quiero agradecer a Fidel (maestrazo), Cecilia y Ruth, ya que sin ellos ningún experimento hubiese sido posible y las largas horas de espera hubiesen sido aún más tediosas. No quiero dejar de agradecer a radio futuro porque gracias a ella, en el laboratorio, nunca nos faltó ROCK.

Quiero dar las gracias a todos y cada uno de los que de una forma u otra, contribuyeron con su granito de arena a hacer de mi sueño, una realidad.

Para finalizar, sólo quiero pedir a los que me han apoyado y ayudado en mí camino, que lo sigan haciendo en esta nueva etapa que comienza para mí….Gracias a todos
ÍNDICE GENERAL

<table>
<thead>
<tr>
<th>ÍNDICE GENERAL</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÍNDICE GENERAL</td>
<td>3</td>
</tr>
<tr>
<td>ÍNDICE DE FIGURA</td>
<td>7</td>
</tr>
<tr>
<td>ABREVIATURAS</td>
<td>8</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>9</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>10</td>
</tr>
<tr>
<td>1. INTRODUCCIÓN</td>
<td>11</td>
</tr>
<tr>
<td>1.1 Generalidades</td>
<td>11</td>
</tr>
<tr>
<td>1.2 Corazón</td>
<td>11</td>
</tr>
<tr>
<td>1.3 Fibroblastos cardíacos</td>
<td>11</td>
</tr>
<tr>
<td>1.4 Estrés de retículo endoplasmático</td>
<td>12</td>
</tr>
<tr>
<td>1.4.1 Sensores de estrés</td>
<td>13</td>
</tr>
<tr>
<td>1.4.2 Estrés de retículo endoplasmático en corazón</td>
<td>16</td>
</tr>
<tr>
<td>1.4.3 Estrés de retículo endoplasmático y proteínas de la MEC</td>
<td>17</td>
</tr>
<tr>
<td>1.4.4 Estrés de retículo endoplasmático y viabilidad celular</td>
<td>17</td>
</tr>
<tr>
<td>1.5 Factor de crecimiento transformante beta (TGFβ)</td>
<td>18</td>
</tr>
<tr>
<td>1.5.1 TGFβ₁ y ER stress</td>
<td>19</td>
</tr>
<tr>
<td>2. HIPÓTESIS</td>
<td>21</td>
</tr>
<tr>
<td>3. OBJETIVO GENERAL</td>
<td>21</td>
</tr>
</tbody>
</table>
4. OBJETIVOS ESPECÍFICOS... 21

5. MATERIALES Y MÉTODOS.. 22
5.1. Reactivos... 22
5.2. Modelo animal.. 22
5.3. Aislamiento y cultivo de fibroblastos cardíacos de rata neonata... 22
5.4. Preparación de solución de tunicamicina.. 23
5.5. Preparación de extractos celulares totales.. 23
5.6. Electroforesis en geles de poliacrilamida.. 23
5.7. Electrotransferencia de proteínas.. 23
5.8. Inmunowestern blot.. 24
5.9. Viabilidad celular... 25
5.9.1. Viabilidad Celular por citometría de flujo... 25
5.9.2. Viabilidad por conteo de células... 25
5.10. Cuantificación de la apoptosis celular mediante ioduro de propidio (PI)......................... 26
5.11. Determinación de colágeno soluble... 26
5.12. Análisis estadístico.. 26
6. RESULTADOS..27

6.1 Efecto de Tn sobre la viabilidad celular...27

6.1.1 Efecto de la concentración de Tn...27

6.1.2 Efecto del tiempo de exposición a Tn...28

6.1.3 Determinación de la apoptosis inducida por Tn...28

6.2 Efecto de TGFβ₁ sobre la pérdida de viabilidad inducida por Tn......................30

6.2.1 Efecto del tiempo de exposición a Tn y TGFβ₁...30

6.2.2 Efecto de las concentraciones de Tn y TGFβ₁ sobre la viabilidad celular de FCNR..33

6.3 Efecto de Tn y TGFβ₁ sobre los niveles de las proteínas marcadoras de estrés de retículo endoplasmático..34

6.3.1 Efecto sobre la expresión de BiP...34

6.3.2 Efecto sobre la expresión de PDI..36

6.3.3 Efecto sobre la expresión de eIF2α fosforilado..38

6.3.4 Efecto sobre la expresión de CHOP...40

6.4 Efecto de Tn y TGFβ₁ sobre la secreción de colágeno......................................42

6.4.1 Efecto de Tn y TGFβ₁ sobre la secreción de colágeno soluble........................42

6.4.2 Efecto de Tn y TGFβ₁ sobre la expresión de CHOP......................................42
7 DISCUSIÓN.. 44

7.1 Efecto de Tn sobre la viabilidad celular... 44

7.2 Tn induce estrés de retículo endoplasmático en FCNR... 45

7.3 Efecto de TGFβ1 sobre la viabilidad celular... 47

7.4 Efecto de TGFβ1 sobre la expresión de proteínas de estrés de retículo endoplasmático.. 47

8. CONCLUSIONES... 51

9. Modelo propuesto del efecto citoprotector de TGFβ1 sobre la apoptosis inducida por Tn... 52
ÍNDICE DE FIGURAS

Figura 1 Vía de señalización de la UPR en células de mamíferos 15
Figura 2 Efecto de la concentración de Tn sobre la viabilidad celular 27
Figura 3 Efecto de Tn en función del tiempo sobre la viabilidad celular 28
Figura 4 Apoptosis de fibroblastos estimulados con Tn 29
Figura 5 Efecto de TGF\(\beta_1\) sobre la muerte celular gatillada por Tn por 24 y 48 horas ... 31
Figura 6 Efecto de TGF\(\beta_1\) sobre la pérdida de la viabilidad gatillada por Tn 32
Figura 7 Efecto de concentraciones variables de Tn en presencia de concentraciones variables de TGF\(\beta_1\), por 48 horas sobre la viabilidad celular ... 33
Figura 8 Determinación de los niveles de BiP cuando los FCNR son estimulados con Tn y TGF\(\beta_1\) ... 35
Figura 9 Determinación de los niveles de PDI cuando los FCNR son estimulados con Tn y TGF\(\beta_1\) ... 37
Figura 10 Determinación de los niveles de eIF2\(\alpha\)-P cuando los FCNR son estimulados con Tn y TGF\(\beta_1\) ... 39
Figura 11 Determinación de los niveles de CHOP cuando los FCNR son estimulados con Tn y TGF\(\beta_1\) ... 41
Figura 12 Efecto de Tn y TGF\(\beta_1\) sobre la secreción de colágeno soluble y la expresión de CHOP ... 43
Figura 13 Modelo propuesto del efecto citoprotector de TGF\(\beta_1\) sobre la apoptosis inducida por Tn ... 52
ABREVIATURAS

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATF4</td>
<td>Factor activador de la transcripción 4</td>
</tr>
<tr>
<td>ATF6</td>
<td>Factor activador de la transcripción 6</td>
</tr>
<tr>
<td>BiP</td>
<td>Proteína de unión a inmunoglobulina</td>
</tr>
<tr>
<td>BSA</td>
<td>Albúmina de suero de bovino</td>
</tr>
<tr>
<td>CHOP</td>
<td>Factor de transcripción homólogo a la proteína C/EBP</td>
</tr>
<tr>
<td>csp</td>
<td>Cantidad suficiente para</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimetil sulfóxido</td>
</tr>
<tr>
<td>EDTA</td>
<td>Acido etilendiaminotetraacético</td>
</tr>
<tr>
<td>eIF2α</td>
<td>Factor eucariótico de iniciación 2</td>
</tr>
<tr>
<td>ERO1α</td>
<td>Proteína oxidoreductin 1 del retículo endoplasmático</td>
</tr>
<tr>
<td>FBS</td>
<td>Suero fetal de bovino</td>
</tr>
<tr>
<td>FCNR</td>
<td>Fibroblastos cardiacos neonatos de rata</td>
</tr>
<tr>
<td>Fig.</td>
<td>Figura</td>
</tr>
<tr>
<td>GADD34</td>
<td>Proteína inducible por daño al DNA y por detención del crecimiento</td>
</tr>
<tr>
<td>Grp94</td>
<td>Proteína regulada por glucosa 94</td>
</tr>
<tr>
<td>h</td>
<td>Hora</td>
</tr>
<tr>
<td>HEPES</td>
<td>Acido N-2-hidroxietilpiperazina N-2-etanosulfónico</td>
</tr>
<tr>
<td>HSP</td>
<td>Proteína de choque térmico</td>
</tr>
<tr>
<td>IRE1</td>
<td>proteína reclutadora de inositol 1</td>
</tr>
<tr>
<td>JNK</td>
<td>Quinasa N-terminal de c-Jun</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>LTBP</td>
<td>Proteína de unión latente al factor de crecimiento transformante β</td>
</tr>
<tr>
<td>MAPK</td>
<td>Proteína quinasa activada por mitógenos</td>
</tr>
<tr>
<td>MEC</td>
<td>Matriz extracelular</td>
</tr>
<tr>
<td>mL</td>
<td>Mililitro</td>
</tr>
<tr>
<td>NaCl</td>
<td>Cloruro de Sodio</td>
</tr>
<tr>
<td>Na3VO4</td>
<td>Ortovanadato de sodio</td>
</tr>
<tr>
<td>-P</td>
<td>Fosforilado</td>
</tr>
<tr>
<td>PD</td>
<td>Proteína disulfuro isomerasa</td>
</tr>
<tr>
<td>PERK</td>
<td>Quinasa del retículo endoplasmático semejante a PKR/quinasa pancreática eIF2α</td>
</tr>
<tr>
<td>PBS</td>
<td>Tampón fosfato salino</td>
</tr>
<tr>
<td>PMSF</td>
<td>Fenilmetilsulfonfluoruro</td>
</tr>
<tr>
<td>p/v</td>
<td>Porcentaje peso volumen</td>
</tr>
<tr>
<td>RE</td>
<td>Reticulo endoplasmático</td>
</tr>
<tr>
<td>rpm</td>
<td>Revoluciones por minuto</td>
</tr>
<tr>
<td>SD</td>
<td>Desviación estándar</td>
</tr>
<tr>
<td>SDS</td>
<td>Dodecil sulfato de sodio</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Gel de poliacrilamida denaturante</td>
</tr>
<tr>
<td>TRAF2</td>
<td>Factor 2 asociado al receptor de TNF</td>
</tr>
<tr>
<td>TBS</td>
<td>Tampón tris salino</td>
</tr>
<tr>
<td>TGFβ1</td>
<td>Factor de crecimiento transformante beta 1</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N´,N´-tetrametil-etilendiamina</td>
</tr>
<tr>
<td>Tn</td>
<td>Tunicamicina</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-(hidroximetil)-aminoetano</td>
</tr>
<tr>
<td>µg</td>
<td>Microgramo</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitro</td>
</tr>
<tr>
<td>vs</td>
<td>Versus</td>
</tr>
<tr>
<td>XBP-1</td>
<td>Proteína de unión a X-box tipo 1</td>
</tr>
</tbody>
</table>
Resumen

En el corazón, los fibroblastos, las células más abundantes, tienen funciones estructurales, actúan como sensores de los cambios del entorno, reaccionan frente a estímulos externos secretando factores de crecimiento, tienen una alta capacidad proliferativa y de secreción de proteínas de matriz extracelular.

El retículo endoplasmático (RE) es el responsable de la síntesis y correcto plegamiento de las proteínas, pero cuando por diferentes estímulos se ve alterado el correcto proceso de plegamiento se produce lo que se conoce como estrés de retículo endoplasmático. La acumulación de proteínas mal plegadas en el lumen del RE contribuye al desarrollo de un gran número de enfermedades neurodegenerativas, inmunes, endocrinas y cardiovasculares. En el RE existe toda una maquinaria traduccional que mantiene un correcto flujo de la información para el correcto plegamiento proteico, entre las que destacan los sensores de estrés de RE como PERK, IRE, ATF6, las chaperonas BiP y PDI y la proteína CHOP que funciona como un inductor de apoptosis.

Este es el primer estudio que considera evaluar el efecto del estrés de RE sobre la viabilidad celular y la secreción de proteínas de la MEC en fibroblastos cardiacos de ratas neonatas y para ello utilizamos Tunicamicina (Tn), un antibiótico que induce estrés de RE.

Nuestros resultados mostraron que los fibroblastos cardiacos presentan una alta sensibilidad a la apoptosis inducida por Tn, junto con un cambio en la expresión de las proteínas marcadoras de estrés de RE. Además de lo anterior, nuestros resultados mostraron que el pre-tratamiento con TGFβ₁ (un agente pro-fibrótico de marcada acción sobre fibroblastos cardiacos) fue capaz de prevenir la muerte por apoptosis inducida por Tn en los fibroblastos cardiacos, a través de un mecanismo de adaptación al estrés de RE, modificando los niveles de expresión de las proteínas marcadoras de estrés de RE. Sin embargo, TGFβ₁ no fue capaz de revertir la disminución en la secreción de colágeno inducida por efecto de Tn. En conclusión, TGFβ₁ protege de la apoptosis inducida por Tn, abriendo perspectivas como un mecanismo de prevención de patologías en las que participa el estrés de RE.
Summary

TGF β1 protects neonat rat cardiac fibroblasts death induced stress endoplasmic reticulum

In the heart, fibroblasts, the cells more abundant, have structural features, act as sensors of the changing environment, react to external stimuli secreting growth factors, have a high proliferative capacity and secretion of extracellular matrix proteins.

The endoplasmic reticulum (ER) is responsible for the synthesis and proper folding of proteins, but when a stimulus alters the proper folding process occurs endoplasmic reticulum stress. The accumulation of bad folded proteins into the ER lumen contributes to the development of a large number of neurodegenerative diseases, immune, endocrine and cardiovascular disorders. In ER there is a whole translational machinery that maintains the proper flow of information to the proper protein folding, including ER stress sensors as PERK, IRE1α, ATF6, proteins like BiP and PDI and the protein CHOP that works as an inducer of apoptosis.

This is the first study that considers assess the effect of ER stress on the feasibility of cell and secretion of the MEC proteins in neonate rat cardiac fibroblasts and for that we use Tunicamicina (Tn), an antibiotic that induces stress of ER.

Our results showed that cardiac fibroblasts have a high sensitivity to apoptosis induced by Tn, along with a change in the expression of the protein marker of stress ER. In addition, our results showed that pre-treatment with TGF β1 (an agent with marked pro-fibrotic action on cardiac fibroblasts) was able to prevent death by apoptosis induced by Tn in cardiac fibroblasts, through a mechanism of adaptation to ER stress, by changing levels of expression of the protein marker of stress RE. However, TGF β1 was not able to reverse the decline in the secretion of collagen induced by effect of Tn. In conclusion, TGF-β1 protects apoptosis induced Tn, opening prospects as a mechanism for the prevention of diseases in which participates ER stress.
1. INTRODUCCIÓN

1.1 Generalidades

Tanto en Chile como en el resto del mundo, la mortalidad debido a patologías cardiovasculares corresponde aproximadamente al 30% del total de los decesos(1) y se espera que para el año 2020 este tipo de patologías sean causantes del 73% de las mortalidades y del 60% de la morbilidad(2), por lo que se hace muy necesario conocer sus causas tanto a nivel clínico como a nivel molecular.

1.2 Corazón

Por ser el órgano principal del sistema cardiovascular, la mayoría de las patologías que afectan este sistema se concentran en el corazón. Celularmente, está compuesto por cardiomiocitos, que representan el 30% en número y el 70% en peso del total, y por células no musculares como células endoteliales, mastocitos, células inmunes, células del musculo liso vascular y fibroblastos, siendo estos últimos los más abundantes ya que corresponden aproximadamente al 66% en número y al 30% en peso del total celular(3).

1.3 Fibroblastos cardiacos

Los fibroblastos, no sólo tienen funciones estructurales y de secreción de proteínas de la matriz extracelular (MEC) como se pensaba antaño, sino que además son capaces de actuar como sensores de los cambios del entorno y reaccionar frente a estímulos externos, tanto mecánicos como químicos, produciendo citoquinas de acción autocrina y paracrina(4,5), gracias a las cuales pueden migrar, proliferar y diferenciarse a un fenotipo mucho más activo. En condiciones fisiológicamente normales, el fibroblasto tiene como principal función la secreción de proteínas de la MEC, principalmente colágeno y fibronectina para así crear la red que sustenta a los cardiomiocitos, pero en estados patológicos participan de forma muy activa en el proceso de cicatrización(3,6). Cabe mencionar también, la interacción que existe entre los cardiomiocitos y los fibroblastos ya que los primeros son capaces de liberar factores que inducen la proliferación y liberación de colágeno por parte de los fibroblastos y estos, a su vez, son capaces de liberar angiotensina-II y endotelina que actúan en forma paracrina sobre los cardiomiocitos induciendo la hipertrofia de estos(3). Por último, es importante mencionar una característica muy particular de los fibroblastos cardiacos, su capacidad de diferenciarse a
un fenotipo mucho más activo denominado miofibroblasto. Este fenotipo se produce por la acción autocrina o paracrina de mediadores tales como el factor de crecimiento transformante subtipo beta 1 (TGFβ1), factor de crecimiento derivado de plaquetas (PDGF), factor de crecimiento análogo a la insulina tipo II (IGF-II) y la interleuquina-4 (IL-4)(7), que son liberados en condiciones patológicas como un infarto cardiaco o cuando hay una sobrecarga de volumen, y que estimulan la proliferación y diferenciación de los fibroblastos cardiacos(7).

1.4 Estrés de retículo endoplasmático

El retículo endoplasmático (ER), es el responsable de la síntesis y correcto plegamiento de las proteínas, por lo que tan sólo el 5% del total de proteínas dentro del citoplasma corresponde a proteínas mal plegadas y no plegadas. Dentro del lumen del RE existen chaperonas residentes que junto con toda una maquinaria mantienen un correcto flujo en el plegamiento proteico, pero cuando por diferentes razones como privación de nutrientes, anoxia e isquemia, infección por virus, deficiencias de calcio, diferenciación celular, inhibición de la bomba de Ca-ATPasa (Tapsigargina), inhibición de la N-glicosilación (Tunicamicina o Tn), etc.(8), se ve alterado el correcto proceso de plegamiento se produce lo que se conoce como estrés de retículo endoplasmático que no es más que un desbalance entre la carga de proteínas no plegadas que entran al RE y la capacidad de la maquinaria celular para manejar esta carga. La respuesta celular a este fenómeno se denomina respuesta a proteínas mal plegadas (del inglés unfolded protein response: UPR), cuya función es transmitir la información obtenida a través de los sensores de estrés al núcleo para producir una respuesta que se puede dividir en tres objetivos, disminuir la carga proteica que entra al retículo, aumentar la capacidad del retículo para manejar las proteínas mal plegadas y por último si la homeostasis no puede ser restablecida, activar la maquinaria de muerte(9,10,11,12,13), aunque los tres fenómenos son activados al mismo tiempo(13).
1.4.1 Sensores de estrés

Los sensores de estrés de retículo son bastante similares en las células eucariontes y están compuestos por tres proteínas transmembrana del retículo, que poseen su extremo amino terminal en el lumen del retículo, y su extremo carboxilo terminal hacia el citoplasma. Las tres proteínas que han sido identificadas son IRE-1 (inositol requiring protein-1), ATF6 (activating transcription factor-6) y PERK (protein kinase RNA (PKR)-like ER kinase)(12, 13, 14,15).

IRE-1 posee dos actividades diferentes en sus dominios luminales y citosólicos. Con su porción luminal censa el ambiente de proteínas plegadas mientras que en su porción citosólica contiene un dominio Ser/Thr quinasa. Cuando aumenta la cantidad de proteínas mal plegadas, IRE1 se activa produciéndose su dimerización, lo que lleva a la fosforilación de los dominios quinasas yuxtapuestos gracias a la actividad de su dominio citosólico cuyo único sustrato conocido es la misma proteína. La activación puede ocurrir por la unión directa de las proteínas mal plegadas a la zona luminal de IRE1 o por la liberación desde esta zona de la chaperona residente del retículo BiP (GRP78) que reprime a IRE1, o por ambos efectos al mismo tiempo. La transfosforilación que ocurre después de la dimerización, activa la función endoribonucleasa de este sensor, para que se produzca el corte del único sustrato que se conoce, el mRNA que codifica para el factor XBP-1. IRE1 corta 2 veces este mRNA, quitando un trozo intermedio, lo que lleva a un cambio en el marco de lectura para que se produzca una proteína más estable de 41 kDa denominada XBP-1s, que es un potente activador de los genes de la UPR y que pertenece a la familia de los factores de transcripción bZIP. Por otro lado, el mRNA que no ha sido cortado, codifica una proteína lábil (XBP-1u), pero que tiene por función reprimir la expresión de los genes involucrados en la UPR(13, 14, 16,17). XBP-1s heterodimeriza con la proteína NF-Y y se une a lo menos a 2 zonas regulatorias en los promotores de los genes de la UPR, siendo las principales zonas de unión la zona ERSE (ER stress enhancer) y la zona UPRE (unfolded protein response element)(11, 14). Principalmente XBP-1 produce la transcripción de genes que están involucrados con su autorregulación, con la diferenciación y el metabolismo, con la síntesis de proteínas chaperonas como BiP, GRP94, PDI, etc , y con la expresión de genes del sistema de degradación asociada al retículo (ERAD). Junto con lo anterior, el dominio citosólico activado de IRE1, interactúa con la proteína adaptadora TRAF2 que producirá la señalización de una serie de quinasa
rio abajo que llevaran a la activación de NF-kB y JNK, causando la expresión de genes asociados con respuestas de alarma e incluso de muerte13,14,18.

PERK, el segundo sensor de estrés de RE, es muy similar a IRE-1 ya que con su extremo amino terminal también puede censar los cambios en el ambiente proteico y, además, se activa de la misma forma. Una vez que PERK es activada también homodimeriza y se autofosforila produciéndose la activación de su dominio citoplasmático que tiene actividad quinasa y que tiene como sustrato a la subunidad α del factor de iniciación de la traducción (eIF2α), fosforilándolo en la serina 51. Al producirse la fosforilación de eIF2α se inhibe al factor intercambiador de nucleótidos de guanina eIF2B ya que este no puede retornar a su forma activa que es capaz de unir GTP y, bajos niveles de eIF2B llevan a un bajo nivel de la traducción por lo que se produce una disminución en la síntesis proteica. Por otro lado, la fosforilación de eIF2α lleva a un aumento en la traducción del factor de transcripción ATF4, que es capaz de inducir la expresión de genes relacionados con la privación de aminoácidos, con la resistencia al estrés oxidativo y junto con esto induce la expresión de chaperonas de la familia GRP, como BiP (GRP78), al heterodimerizar con XBP-1, y la expresión del factor de transcripción CHOP que a su vez induce la traducción de ERO1α, GADD34 y de proteínas que llevarán a la muerte celular. GADD34 es la subunidad regulatoria de la fosfatasa PP1 que tiene por función defosforilar a eIF2α y así terminar la señalización de la vía PERK; en este proceso también interviene una fosfatasa constitutiva (CReP) que asiste a GADD34 en la defosforilación de eIF2α13,16,17,18,19

El último sensor de estrés de retículo es la proteína transmembrana ATF6. Este sensor es sintetizado como un precursor inactivo que se encuentra anclado al retículo a través de su segmento transmembrana y, al igual que los otros dos sensores, tiene una porción luminal que censal el estrés por la liberación desde esa zona de la proteína BiP. Una vez que esto último sucede, ATF6 es transportada hacia el aparato de golgi donde sufre la acción de la proteasa S1P (proteasa del sitio 1) y luego de la endoproteasa S2P (proteasa del sitio 2) para producir el fragmento que se unirá al DNA, denominado ATF6α, y que producirá el aumento en la expresión de ciertos genes, entre ellos los que codifican para el mRNA de XBP-113,14,19.
1.4.2 Estrés de retículo endoplasmático en corazón

La acumulación de proteínas mal plegadas contribuye en un gran número de enfermedades neurodegenerativas, inmunes y endocrinas, por lo que resulta aparente que también contribuya en las enfermedades cardiacas y vasculares, ya que son los cambios en el ambiente del RE, como la variaciones en los niveles de calcio, glicosilación de proteínas, variaciones en el balance redox, etc, los que producen la falla en el correcto plegamiento proteico\(^{(20)}\).

El corazón está constantemente bajo estrés metabólico, térmico y mecánico en condiciones fisiológicas y este estrés puede incrementarse debido a un cambio en las condiciones del ambiente o por algún daño patológico. Las células cardiacas y entre ellas los fibroblastos están constantemente desafiados a plegar correcta y eficazmente los polipéptidos nacientes (principalmente colágeno y otras proteínas de la MEC) para poder secretarlos al espacio intersticial.

Los estudios de estrés de RE en corazón se han llevado a cabo sólo en cardiomiocitos, donde se puede mejorar la supervivencia de estos. Incrementos en BiP han sido encontrados en cardiomiocitos H9c2\(^{(21)}\) y en cardiomiocitos neonatos de corazones de ratones hipóxicos e isquémicos\(^{(22)}\). La isquemia también es capaz de inducir los tres brazos de la UPR (PERK, IRE1 y ATF6) y sus respectivos blancos río abajo incluyendo la inducción de CHOP y la activación de la caspasa-12. Junto con esto se ha demostrado que la activación de la UPR durante la isquemia en cardiomiocitos está implicada en la aparición de la muerte celular isquémica\(^{(23)}\). Por otro lado, Thuerauf et al., encontraron que los corazones de ratones sometidos a infarto in vivo exhiben un aumento en la expresión BiP en los cardiomiocitos cercanos a la zona infartada, pero no en las células sanas que se encuentran distales al infarto\(^{(22)}\). También demostraron que la hipoxia induce BiP en cardiomiocitos ventriculares de ratas neonatas y en cardiomiocitos adultos aislados de corazones de ratones. Estos resultados indican que la hipoxia activa la UPR en cardiomiocitos y que las proteínas inducidas por XBP-1 pueden contribuir a proteger al miocardio durante el estrés hipóxico.

Por último, en los corazones humanos postmortem e in vitro e in vivo en modelos de hipoxia e isquemia, PDI fue identificado como un factor clave en la vía de supervivencia\(^{(24)}\). PDI actúa tanto en el estrés hipóxico como en el estrés oxidativo, para
contribuir en el correcto plegamiento proteico en cooperación con ERO-1. Estos datos sugieren un efecto protector de PDI en los corazones humanos infartados mediado por una reducción de la tasa de apoptosis y por una prevención en la remodelación cardiaca, en la que el estrés de RE fue activado para contrarrestar los daños isquémicos en el corazón.

1.4.3 Estrés de retículo endoplasmático y proteínas de la MEC

En el corazón una red de colágeno fibrilar preserva la arquitectura del tejido y la geometría de la cámara. El recambio del colágeno es proporcionado normalmente por fibroblastos situados en los espacios intersticiales y perivasculares. La síntesis de colágeno y su degradación coexisten en el corazón mediante un equilibrio que determina la concentración de colágeno en la matriz extracelular. La síntesis de colágeno implica la participación de las chaperonas del RE HSP47, BiP y PDI(25, 26,27) entre otras, siendo estas dos últimas, como ya se mencionó, proteínas que aumentan su expresión en respuesta al estrés de RE. Lo anterior indica que el fibroblasto cardiaco tiene una maquinaria suficiente para responder a una elevada sobrecarga sintética de proteínas, por lo tanto, un prolongado o persistente estrés de RE, podría alterar el riguroso control de calidad en la síntesis de proteínas, llevando a una disminución en la síntesis y secreción de colágeno, lo que conllevaría a una alteración de los procesos de cicatrización, o por el contrario, una elevada resistencia al estrés de RE podría llevar a una acumulación adversa de colágeno, debido a una síntesis aumentada o a una degradación inadecuada que conllevaría al desarrollo de fibrosis cardiaca.

1.4.4 Estrés de retículo endoplasmático y viabilidad celular

Los fibroblastos cardiacos tienen una alta capacidad proliferativa, en respuesta a una amplia variedad de estímulos tales como péptidos, hormonas, factores de crecimiento, etc(28). Por otro lado, también se han descrito estímulos que inducen muerte por apoptosis y necrosis en fibroblastos cardiacos(29). La apoptosis celular se puede clasificar según su vía de ejecución, en dos subtipos, la vía extrínseca y la vía intrínseca, siendo esta última la vía que se ha relacionado directamente con la muerte por estrés de RE. Las tres vías de la UPR contribuyen a inducir apoptosis cuando los cambios generados en la célula son insuficientes para revertir el estrés de RE. El factor de transcripción CHOP, la quinasa JNK y las caspasas han sido involucradas en la activación de la apoptosis en respuesta al
estrés de RE, ya que CHOP disminuye la expresión de la proteína antiprotética Bcl-2\(^{(30)}\) y aumenta la expresión de ERO-1α, lo que genera un ambiente hiperóxido-en el RE produciendo un incremento en la formación de proteínas mal plegadas\(^{(30, 31)}\), junto con producir una disminución en la fosforilación de eIF2α producida por el aumento en la expresión de GADD34, lo que lleva a la recuperación de la traducción\(^{(13, 17, 30)}\) y por lo tanto a una sobrecarga en la síntesis proteica. Por otro lado, IRE1α dimerizado y fosforilado recluta a TRAF2 formando un complejo que activa a la quinasa ASK1 lo que lleva a la activación de la vía de JNK que conducirá a la muerte de la célula\(^{(32)}\). Además de esto el reclutamiento de TRAF2 por parte de IRE1α produce la disociación de este de la procaspasa 12 lo que llevaría a la activación de esta última\(^{(30)}\) junto con la acción ejercida por la caspasa-7, que se transloca desde el citosol a la membrana del RE cuando hay estrés de RE, para interactuar con la caspasa-12 y activarla\(^{(33)}\). Junto con lo anterior, se sabe que las calpainas, una familia de cisteín proteasas dependientes de calcio, juegan un rol importante en la activación de la caspasa-12 durante el estrés de RE\(^{(34)}\).

1.5 Factor de crecimiento transformante beta (TGFβ)

El factor de crecimiento transformante beta 1 o TGFβ1 es un polipéptido perteneciente a la superfamilia de las citocinas de crecimiento transformante de tipo beta, que lleva a cabo muchas funciones celulares tales como el control del crecimiento, la diferenciación y proliferación celular, y la apoptosis. Existen tres isoformas estructurales de TGFβ (TGFβ1, TGFβ2 y TGFβ3) codificadas por tres genes distintos, donde TGFβ1 es el más prevalente en mamíferos. Las tres isoformas de esta citocina son producidas como péptidos inactivos ya que están unidos a la proteína de unión latente a TGFβ o LTBP y son activados por una división proteolítica por ejemplo por plasmina o trombospodin-1. Toda la familia de citocinas TGFβ se une a diferentes isofomas de un receptor heterodimérico formado por el receptor tipo I, un receptor con actividad serina/treonina quinasa, y por el receptor tipo II que posee 5 isoformas, resultando en la fosforilación del receptor que activa Smads\(^{(35, 36)}\). El receptor tipo I fosforila a las proteínas Smad2 y Smad3 gracias a su actividad quinasa, con lo que se produce la activación de estas y pueden unirse a Smad4 para translocarse al núcleo y activar la transcripción de ciertos genes. El complejo Smad3/Smad4 se une directamente al promotor de consenso para Smad que es la secuencia CAGAC, por otro lado Smad2 requiere de una proteína de unión al DNA de la familia Fast (Fast-1) para poder activar la transcripción\(^{(35)}\). Por otra parte el receptor tipo II produce la activación de un gran número de señales que incluyen p38 MAPK. Erk, JNK y
TAK1\(^{(36)}\). La respuesta transcripcional a TFGβ generalmente requiere de los receptores tipo I y tipo II, junto con las proteínas Smad, pero la especificidad de la respuesta depende de a) las vías de señalización auxiliares inducidas por TFGβ y b) el nivel basal de los factores de transcripción que actúan junto a las proteínas Smad\(^{(35)}\).

TGFβ es una pieza central en la respuesta fibrogénica ya que es el mediador esencial de los efectos pro-fibróticos de angiotensina II en el corazón\(^{(35)}\) debido a que esta hormona produce un aumento en la cantidad de TGFβ1\(^{(36)}\) en los fibroblastos cardiacos aumentando la síntesis y secreción de colágeno\(^{(35)}\), razón por la cual es importante dilucidar si TGFβ1 es capaz de producir estrés de RE en los fibroblastos cardiacos y si este fenómeno es capaz de llevar a la muerte de los fibroblastos o adaptarlos para sobrevivir ante una elevada síntesis proteica.

1.5.1 TGFβ1 y ER stress

Hasta el momento, no hay estudios que relacionen directamente TGFβ1 con el estrés de RE. Se sabe que, IGF-1 (otro factor de crecimiento que induce la síntesis de colágeno en fibroblastos cardiacos\(^{(37)}\)), induce mecanismos de adaptación al estrés de RE evitando la apoptosis\(^{(38)}\). Estos resultados sugieren que los factores de crecimiento que inducen la expresión de chaperonas de RE, podrían tener un efecto mitigante sobre la apoptosis inducida por el estrés de RE, de hecho, TGFβ1 induce la expresión de HSP47\(^{(39)}\). Por otro lado, se ha demostrado que en ratones deficientes de CHOP, la expresión del mRNA y las proteínas inducidas por TGFβ1 se encuentran disminuidas en un modelo de fibrosis hepática\(^{(40)}\), sugiriendo que en este modelo el proceso inflamatorio mediado por TGFβ1 es dependiente del estrés de RE. Por último, TGFβ1 ha demostrado tener actividad pro y antiapoptótica\(^{(41, 42, 43)}\). Estos resultados sugieren que las acciones de TGFβ1 dependen del estímulo y tipo de células.
Teniendo en cuenta estos antecedentes se plantearon una serie de interrogantes a resolver:

a) ¿Cuál será el efecto de Tn sobre la viabilidad de fibroblasto cardiacos neonatos de rata?

b) ¿Qué efectos tendrá Tn sobre las proteínas sensoras de estrés de retículo o de las proteínas sensoras de la UPR?

c) ¿Qué efecto tendrá TGF-beta1 sobre los cambios en la viabilidad celular, proteínas sensoras de estrés de RE y proteínas sensoras de UPR modificados por Tn?

d) ¿Qué efecto tendrá Tn sobre la secreción de colágeno, y es capaz el TGFβ₁ de prevenir esos cambios?

A fin de responder a esas interrogantes se ha planteado la siguiente hipótesis:
2. HIPÓTESIS

TGFβ1 protege de la muerte celular inducida por tunicamicina a través de un mecanismo de adaptación al estrés de RE.

3. OBJETIVO GENERAL

Demostrar que tunicamicina induce, en los fibroblastos cardiacos de ratas neonatas, estrés de RE y que el TGFβ1 los protege de la muerte a través de un mecanismo de adaptación al estrés de RE.

4. OBJETIVOS ESPECÍFICOS

1. Demostrar que tunicamicina induce estrés de RE en los FCNR

2. Demostrar que tunicamicina induce muerte celular de los FCNR

3. Demostrar que TGFβ1 disminuye la pérdida de la viabilidad de los FCNR estimulados con Tunicamicina

4. Demostrar que TGFβ1 gatilla mecanismos de adaptación al estrés de RE
5. MATERIALES Y MÉTODOS

5.1 Reactivos

Los siguientes reactivos se adquirieron en Sigma Chemical Co. (St. Louis, MO, EEUU): azul de tripán. En Gibco BRL (Carlsbad, California EEUU) se adquirieron tripsina-EDTA, estándares de pesos moleculares de proteínas pre-teñidas, suero fetal de bovino (FBS). Los compuestos inorgánicos y orgánicos, sales, ácidos y solventes se adquirieron en MERCK (Darmstadt, Alemania). El reactivo quimioluminiscente para western blot (Western Lightning) fue adquirido en PerKinElmer Life Sciences, Inc. (Boston, MA, EEUU). El material de plástico estéril para la obtención y cultivo de fibroblastos cardíacos se obtuvieron en Falcon. TGF-β1 fue adquirido en Chemicon. Los anticuerpos secundarios anti-IgG ratón y anti-IgG conejo, conjugados a peroxidasa se obtuvieron en Calbiochem (La jolla, CA, EEUU). Los anticuerpos primarios anti-BiP, anti-PDI, anti-eIF2α fosforilado se obtuvieron de Cell Signaling Technology (Boston, MA, EEUU), el anticuerpo anti-CHOP fue obtenido de Santa Cruz Biotechnology Inc. (Santa Cruz, CA, EEUU). El anticuerpo anti-β-tubulina, se obtuvo de SIGMA-ALDRICH (St. Louis, MO, EEUU). La tunicamicina (Tn) se obtuvo de BIOMOL International Inc. (Plymouth Meeting, PA, EEUU).

5.2 Modelo animal

Ratas Sprague-Dawley neonatas (2 a 3 días de edad), provenientes del bioterio de la Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, en cumplimiento de todas las normas éticas referidas a la utilización de animales.

5.3 Aislamiento y cultivo de fibroblastos cardíacos ventriculares de ratas neonatas

Se utilizó el procedimiento descrito por Foncea y cols en 1997 (44). Las ratas se decapitaron e inmediatamente se les removió el corazón bajo condiciones de asepsia, se retiraron las aurículas y los ventrículos se cortaron en pequeños pedazos para facilitar las sucesivas digestiones posteriores con pancreatin y colagenasa II. El producto de las digestiones se sometió a un preplaqueo por 2 h a 37°C en medio de cultivo conteniendo 5% FBS y 10% FCS en frascos para cultivo de plástico. Por adhesión diferencial al plástico se separaron fibroblastos de cardiomiocitos. Luego de las 2 h, se cambió el medio por DMEM-F12 + 10% FBS, los fibroblastos se dejaron proliferar hasta confluencia y los cambios de pasaje se realizaron mediante tripsinización (hasta pasaje 2 como máximo).
Posteriormente las células fueron mantenidas en un medio DMEM-F12 + 2,5% FBS por al menos 24 horas antes de ser estimuladas.

5.4 Preparación de solución de tunicamicina

El reactivo tunicamicina fue disuelto en 1 mL de DMSO para generar una solución madre de la cual se hicieron diferentes diluciones para llegar a la concentración deseada de estimulación.

5.5 Preparación de extractos celulares totales

Se prepararon extractos de proteínas totales para evaluar la expresión de las proteínas BiP, PDI, elF2α-P, CHOP y β-tubulina. Las células se sembraron en placas de 100 mm a una densidad de 2x10⁴ cel/cm². Una vez estimuladas y transcurrido en tiempo del ensayo, las células se lavaron tres veces con PBS 1X frío y luego se lisaron con 100 µL de tampón de lisis HEPES±Triton-X100 buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, 1% Triton-X100, 10% glicerol, 1 mM EDTA, 10 mM difosfato de sodio, 100 mM NaF, 17,5 mM B-glicerofosfato, 1mM fluoruro de fenilmetilsulfonilo, leupeptina 2 µg/mL; 10mM aprotinina; 1 mM PMSF y 100 µM Na₃VO₄). El homogeneizado se centrifugó a 10,000 rpm durante 15 min a 4°C. El sobrenadante se recuperó y se le determinó la concentración de proteínas por el método de Bradford (Bio-Rad protein assay). Las proteínas se desnaturaron en tampón SDS-PAGE 4X (glicerol 20 mL, 2-mercaptoetanol 10 mL, SDS 5 g, Tris base 1,51 g, Azul de bromofenol 0,01 g, Agua csp. 100 mL, ajustar a pH 6.8 con HCL), y se almacenaron a -20°C.

5.6 Electroforesis en geles de poliacrilamida

La separación de las proteínas de acuerdo a su peso molecular se realizó mediante electroforesis en geles de poliacrilamida al 8%. Para la detección se cargaron 50 µg de extracto proteico. La electroforesis se realizó a un voltaje constante de 70 Voltios en tampón de electroforesis 1X (Tris base 30,25 g, Glicina 144 g, SDS 10 g, agua 1000 mL para tampón de electroforesis 10X).

5.7 Electrottransferencia de proteínas

Una vez realizada la electroforesis, las proteínas se electrotansfririeron a una membrana de nitrocelulosa (BioRad) a 350 Miliamperes durante 90 min en tampón de transferencia.
5.8 Inmunowestern blot

Una vez transferidas, la membranas se bloquearon con tampón de bloqueo (TBS 1X; Tween-20 0,1%; leche descremada 5% p/v) durante 60 minutos a temperatura ambiente y posteriormente se incubaron con los anticuerpos primarios correspondientes según ensayo.

-
 - BiP, PDI, en tampón de incubación BSA (TBS 1X; Tween-20 0,1%, BSA 5% p/v) a una dilución 1:1000, toda la noche a 4°C con agitación suave.
 - eIF2α-P, en tampón de incubación leche (TBS 1X; Tween-20 0,1%, BSA 5% p/v) a una dilución 1:500, toda la noche a 4°C con agitación suave.
 - CHOP, eIF2α, en tampón de incubación leche PBS (PBS 1X; leche descremada 5% p/v) a una dilución 1:2000 toda la noche a 4ºC con agitación suave.
 - Tubulina (como control de carga), en tampón de incubación con leche descremada a una dilución 1:5000 por dos horas a temperatura ambiente con agitación suave.

Posterior a la incubación, las membranas se lavaron 3 veces por 5 min en TBS 1X / Tween-20 al 0,1%, e incubadas durante 2 h a temperatura ambiente con anti-IgG de ratón conjugado con peroxidasa, a un título de 1:5000 para tubulina; anti-IgG de conejo conjugado con peroxidasa a un título de 1:1000 toda la noche a 4°C para BiP y PDI; 1:2000 para eIF2α, eIF2α-P y 1:7000 para CHOP, todos en tampón de incubación con leche descremada. Para la detección de las proteínas, las membranas, previamente lavadas, se incubaron durante 1 min en solución de ECL (enhanced chemiluminescence) y se expusieron a la película de fotografía Kodak-Biomax. Las películas se digitalizaron y las imágenes fueron sometidas a densitometría con ayuda de los programas computacionales Photoshop 6.0 y USI. Después de realizar los ensayos de inmunowestern blot, las membranas de nitrocelulosa se incubaron por 60 min en una solución de rojo ponceau (rojo ponceau 2%, TCA 30%, ácido sulfosalicílico 30%) para desprender los anticuerpos, posteriormente se lavaron en TBS 1X / Tween-20 al 0,1% por tres veces. Luego de este tratamiento, las membranas pudieron ser reutilizadas para nuevos ensayos de western blot.
5.9 Viabilidad celular

Se realizó a través de los siguientes métodos:

5.9.1 Viabilidad Celular por citometría de flujo.

- Fibroblastos se sembraron en placas 60 mm a una razón de 2×10^4 cel/cm2, cultivadas en medio DMEM-F12 + 10% de FBS, que posteriormente fue reemplazado por DMEM-F12 + 2,5% de FBS. 24 horas después de esto, se aplicó la Tn y/o TGFβ1, a los tiempos y concentraciones indicados para cada experimento. Luego las células fueron soltadas de las placas utilizando Tripsina-EDTA 1x que fue inhibida utilizando DMEF-12 10% suero, en proporción 1:1. Por otro lado el medio que contenía a las células fue recolectado, centrífugado a 1500 rpm por 5 minutos y la fracción no soluble recuperada y adisionada a las células soltadas inicialmente. Luego a las células en suspensión se les proporcionó ioduro de propidio (PI) 20µg/µL. Finalmente se midió la muerte celular por citometría de flujo (FACS CANTO, Becton Dickinson).

5.9.2 Viabilidad por conteo de células.

- Fibroblastos se sembraron en placas 60 mm a una razón de 2×10^4 cel/cm2, cultivadas en medio DMEM-F12 + 10% de FBS, que posteriormente fue reemplazado por DMEM-F12 + 2,5% de FBS. 24 horas después de esto, se aplicó la Tn y/o TGFβ1, a los tiempos y concentraciones indicados para cada experimento. Luego las células fueron soltadas de las placas utilizando Tripsina-EDTA 1x que fue inhibida utilizando DMEF-12 10% suero, en proporción 1:1. Posteriormente se tomó una alícuota de 20µl de la suspensión de células y se le adicionaron 20µL de solución de azul de tripan, se homogeneizó y de esta nueva suspensión de tomaron 20 µL que se colocaron en un cámara de Neubauer doble y se contaron las células vivas.
5.10 Cuantificación de la apoptosis celular mediante ioduro de propidio (PI)

Para cuantificar la apoptosis celular se utilizó la técnica de incorporación de ioduro de propidio. Los fibroblastos se sembraron en placas 60 mm a una razón de 2×10^4 cel/cm2, cultivadas en medio DMEM-F12 + 10% de FBS, que posteriormente fue reemplazado por DMEM-F12 + 2,5% de FBS. 24 horas después de esto, se aplicó la Tn a los tiempos y concentraciones indicados para cada experimento. Las células fueron soltadas de las placas utilizando Tripsina-EDTA 1x. Por otro lado el medio que contenía a las células fue recolectado, centrifugado a 1500 rpm por 5 minutos y la fracción no soluble recuperada y adicionada a las células soltadas inicialmente de las placas. El total de células obtenidas fue recolectado en metanol frío, almacenado a -20ºC toda la noche, sometido a una segunda centrifugación y la fracción no soluble obtenida fue resuspendida en PBS frío conteniendo RNAsa por 2h. Luego a las células en suspensión se les proporcionó ioduro de propidio (PI) 20µg/µL un minuto antes de la medición. Finalmente se determinó la apoptosis celular por citometría de flujo (FACS CANTO, Becton Dickinson).

5.11. Determinación de colágeno soluble

Para realizar a cuantificación del colágeno soluble se utilizó el Kit “Soluble Collagen Assay” Sircol®, de la manera que se describe en el manual del fabricante.

5.12. Análisis estadístico

Los resultados mostrados corresponden al promedio ± SD de, al menos, tres experimentos independientes. Los datos se analizaron por ANOVA y la prueba Tukey para determinar la significancia estadística de los resultados.
6. RESULTADOS

6.1 Efecto de Tn sobre la viabilidad celular

Para determinar cómo afecta la concentración y el tiempo de exposición a Tn a la viabilidad celular de los FCNR, estos fueron mantenidos en suero al 2,5% durante 24 horas, como se describe en materiales y métodos, antes de ser estimulados con diferentes concentraciones de Tn por 24 horas y con una concentración de 1 µg/mL por 12, 24 y 48 horas.

6.1.1 Efecto de la concentración de Tn

La viabilidad de los FCNR, se determinó por conteo celular mediante azul de tripán. En la figura 1 se observa la cuantificación de este fenómeno presentándose una disminución significativa en el número de células viables a las concentraciones de 5 y 10 µg/mL de Tn, llegando esta disminución a un 56,3% (1,97 x 10^5 células) y 37,5% (1,25 x 10^5 células), con respecto al control (p< 0,01 vs Control, n=3)

Fig. 2. Efecto de la concentración de Tn sobre la viabilidad celular. Determinación de la viabilidad de FCNR estimulados con Tn (0,5 a 10 µg/mL) por 24h, a través de conteo celular usando azúl de tripán. Los resultados muestran la media ± SD para tres experimentos independientes (**p< 0,01 vs Control).
6.1.2 Efecto del tiempo de exposición a Tn

En la figura 2, se observa que a mayor tiempo de exposición a Tn, el número de células vivas se ve disminuido con respecto al control, siendo la disminución notablemente significativa a las 48 horas de estímulo, ya que las células vivas disminuyen a un 51,7% (1,48 x 10^5 células) con respecto al control (p<0,001 vs control 48h).

![Gráfico mostrando el efecto de Tn en función del tiempo sobre la viabilidad celular](image)

Fig. 3. Efecto de Tn en función del tiempo sobre la viabilidad celular. Determinación de la viabilidad de FCNR, estimulados con Tn 1µg/mL hasta 48h. La viabilidad se determinó por conteo celular usando azul de tripán. Los resultados muestran la media ± SD para tres experimentos independientes (**p<0,001 vs control 48h, n=3).

6.1.3 Determinación de la apoptosis inducida por Tn

Luego de demostrar que Tn disminuyó la viabilidad del FCNR, se evaluó si el tipo de muerte producida por Tn era apoptosis. Para ello se utilizó la citometría de flujo ocupando como marcador apoptótico la incorporación de iodo de propidio (PI). En los histogramas de la figura 3A se observa que a las 48 horas el porcentaje de células apoptóticas aumenta, lo que se evidencia por la ganancia de PI en la subpoblación apoptótica. El análisis gráfico (figura 3B) muestra que a sólo a las 48 horas el porcentaje de células apoptóticas (20,6 ± 0,98%) se hace estadísticamente significativo respecto al control correspondiente (2,85 ± 1,34%).
Fig. 4. Apoptosis de fibroblastos estimulados con Tn. La apoptosis de FCNR fue medida por incorporación de PI que se aprecia en el cuadrante P2. FCNR fueron estimulados con Tn 1µg/mL por 12, 24 y 48 horas. (A) histogramas obtenidos por citometría de flujo. (B) Análisis gráfico de los histogramas. Los resultados muestran la media ± SD para tres experimentos independientes. En la figura 3B ***p<0.001 vs control 48h.
6.2 Efecto de TGFβ₁ sobre la pérdida de viabilidad inducida por Tn

Para determinar cómo afecta la concentración y el tiempo de exposición a TGFβ₁ a los cambios en la viabilidad inducidos por Tn, los FCNR fueron mantenidos en suero al 2,5% durante 24 horas, como se describe en materiales y métodos, pre-estimulados con diferentes concentraciones de TGFβ₁ (0,5; 1; 5; 10 y 15 ng/mL) y luego estimulados con diferentes concentraciones de Tn (1 y 5 µg/mL) por 24 y 48 horas.

6.2.1 Efecto del tiempo de exposición a Tn y TGFβ₁

Para la caracterización del efecto del tiempo de exposición sobre la viabilidad, se utilizó el conteo celular. Los FCNR fueron pre-estimulados durante una hora con TGFβ₁ 5ng/mL. Posteriormente fueron estimulados con Tn 1 µg/mL por 24 y 48 horas. En la figura 4 se observa que TGFβ₁ per se no tiene efectos sobre la viabilidad celular y que Tn reduce el número de células vivas a ambos tiempos de estímulos. Al mismo tiempo se observa que TGFβ₁ previene la disminución de células vivas a las 24 horas, más que a las 48 horas de estímulo. Por otro lado, mediante citometría de flujo y usando como marcador de muerte la incorporación de ioduro de propidio (PI), se observa en los histogramas de la figura 5A, que los fibroblastos cardiacos neonatos que fueron pre-estimulados con TGFβ₁ presentan menos muerte celular a las 24 que a las 48 h, lo que se evidencia por la poca ganancia de PI. El análisis gráfico muestra que sólo las células que fueron pre-estimuladas con TGFβ₁ y estimuladas con Tn por 24 horas, muestran una disminución en el porcentaje de células muertas (7,9 ± 1,6%) con respecto a las células estimuladas sólo con Tn por 24 horas (12,8 ± 1,6%).
Fig. 5. Efecto de TGFβ1 sobre la muerte celular gatillada por Tn por 24 y 48 horas. La viabilidad FCNR estimulados con TGFβ1 5ng/mL y Tn 1µg/mL, se determinó por conteo celular utilizando azul de tripán. Los resultados muestran la media ± SD para tres experimentos independientes (*p< 0.05 vs Tn 24h, &p<0,05 vs Tn 48h, ***p<0,001 vs control 48h, n=3).
Fig. 6. Efecto de TGFβ₁ sobre la pérdida de la viabilidad gatillada por Tn. La viabilidad de FCNR estimulados con TGFβ₁ 5ng/mL y/o Tn 1μg/mL, fue medida por incorporación de PI que se aprecia en el cuadrante P3. (A) Histogramas obtenidos por citometría de flujo a 24 y 48 horas de estímulo. (B) Análisis gráfico y cuantificación de estos histogramas. Los resultados muestran la media ± SD para tres experimentos independientes. En la figura 5B **p<0,001 vs control 48h, & &p<0,01 vs control 24h y *p<0,05 vs Tn 24h.
6.2.2 Efecto de las concentraciones de Tn y TGFβ₁ sobre la viabilidad celular de FCNR

Para evaluar como afectan las diferentes concentraciones de Tn y/o TGFβ₁ la viabilidad de los FCNR, se utilizó el conteo celular mediante azul de tripán para conocer el número de células vivas después de pre-estimular 1 hora con TGFβ₁ (0,5; 1; 5; 10 y 15 ng/mL) y la posterior estimulación con Tn (1 y 5 µg/mL) durante 48 horas. En la figura 6A se observa que TGFβ₁ por sí solo, a las diferentes concentraciones ensayadas, no tuvo efecto sobre la viabilidad celular. Por otro lado, una notable disminución en el número de células vivas fue observada cuando se estimula con Tn. Sin embargo, en las células estimuladas con las mayores concentraciones de TGFβ₁ (10 y 15 ng/mL) se observa una prevención en la pérdida de la viabilidad celular que es estadísticamente significativa respecto de las células estimuladas con Tn.

![Fig. 7. Efecto de concentraciones variables de Tn en presencia de concentraciones variables de TGFβ₁, por 48 horas sobre la viabilidad celular. Determinación de la viabilidad de FCNR estimulados con TGFβ₁ y Tn, por conteo celular usando azul de tripán. Los resultados muestran la media ± SD para tres experimentos independientes (&&p< 0,01 vs Tn 5µg/mL, ***p<0,001 vs Tn 1µg/mL, n=3). C representa el control.](image-url)
6.3 Efecto de Tn y TGFβ1 sobre los niveles de las proteínas marcadoras de estrés de retículo endoplasmático

Para evaluar como se modifican los niveles de ciertas proteínas marcadoras de estrés de RE, los FCNR fueron estimulados con Tn (1µg/mL) y/o TGFβ1 (5ng/mL) por períodos de 1, 3, 6, 12 y 24 horas. Cuando se utilizaron ambos estímulos las células fueron pre-estimuladas con TGFβ1 durante 1 hora. Posteriormente se recolectaron los extractos celulares y se procedió a realizar ensayos de inmuno western blot, como se describe en materiales y métodos.

6.3.1 Efecto sobre la expresión de BiP

Para determinar si Tn produce estrés de RE, se evaluó la expresión de la proteína chaperona BiP. Los FCNR fueron estimulados con Tn 1µg/mL, (Figura 7A) y se observó un aumento significativo en la expresión de esta proteína a partir de la hora de estímulo (1, 4 veces respecto al control p<0,05) llegando a su máximo a las 12 horas (2 veces respecto al control p<0,001). Al mismo tiempo se midió el cambio en la expresión de BiP al estimular los FCNR con TGFβ1 5ng/mL (Figura 7B). Los resultados muestran que la expresión de esta chaperona cambia significativamente, llegando a ser de 1,3 (p<0,05) y 1,4 (p<0,01) veces respecto al control, a las 12 y 24 horas respectivamente. Cuando los FCNR fueron estimulados con TGFβ1 5ng/mL y Tn 1µg/mL (Figura 7C), se observa un aumento significativo, en la expresión de la chaperona, de 1.3 veces respecto al control (p<0,05) a la hora de estímulo y que se mantiene hasta las 12 horas de estímulo, para luego regresar al nivel basal.
Fig. 8. Determinación de los niveles de BIP cuando los FCNR son estimulados con Tn y TGFβ. Inmunoblot que muestra los cambios en la expresión de BIP. A) Muestra la expresión de BIP cuando los FCNR son estimulados con Tn 1μg/mL (**p<0,001 y *p<0,05 versus control), B) expresión de BIP cuando las células son estimuladas con TGFβ1 5ng/mL (*p<0,05 y **p<0,01 versus control) y C) expresión de BIP cuando los FCNR son pre-estimulados con TGFβ1 durante 1h y posteriormente estimulados con Tn 1μg/mL (**p<0,01 versus control). En la parte inferior de cada uno de los western blots se muestra su respectiva cuantificación. β-tubulina se utilizó como control de carga. Los resultados muestran la media ± SD para tres experimentos independientes.
6.3.2 Efecto sobre la expresión de PDI

Se evaluó el cambio de expresión temporal de la proteína PDI cuando los fibroblastos son estimulados con Tn 1 µg/mL (Figura 8A). Los resultados muestran un aumento estadísticamente significativo (1,6 veces) con respecto al control (p<0,001) a partir de la hora de estímulo y que se mantiene hasta las 12 horas para luego disminuir al nivel basal. Cuando los FCNR son estimulados con TGFβ1 5 ng/mL (Figura 8B), la expresión de PDI se ve aumentada desde la primera hora de estímulo (1,8 veces) llegando a tener su máxima expresión a las 12 horas de estímulo (2,5 veces) respecto al control (p<0,001) para luego disminuir, igualando la condición lograda a la hora de estímulo. Cuando los FCNR fueron estimulados con TGFβ1 5ng/mL y Tn 1µg/mL (Figura 8C), la expresión de la proteína PDI se ve a igualmente aumentada desde la primera hora de estímulo (1,5 veces respecto al control, p<0,01), pero manteniéndose así hasta las 12 horas para luego disminuir al nivel basal a las 24 horas.
Fig. 9. Determinación de los niveles de PDI cuando los FCNR son estimulados con Tn y TGFβ1. Inmunoblot que muestra los cambios en la expresión de PDI. A) Muestra la expresión de BiP cuando los FCNR son estimulados con Tn 1µg/mL (**p<0,001 versus control), B) expresión de PDI cuando las células son estimuladas con TGFβ1 5ng/mL (**p<0,001 versus control) y C) expresión de PDI cuando los FCNR son pre-estimulados con TGFβ1 durante 1h y posteriormente estimulados con Tn 1µg/mL (**p<0,001 versus control). En la parte inferior de cada uno de los western blots se muestra su respectiva cuantificación. β-tubulina se utilizó como control de carga. Los resultados muestran la media ± SD para tres experimentos independientes.
6.3.3 Efecto sobre la expresión de eIF2α fosforilado

Al estimular los FCNR con Tn 1µg/mL (Figura 9A), se observó un aumento en la expresión de eIF2α-P, siendo estadísticamente significativo desde la hora de estímulo y alcanzando un máximo a las 3 horas de estímulo de 2 veces el control (p<0,001). Cuando los FCNR se estimularon con TGFβ1 5ng/mL (Figura 9B) hubo un incremento en la expresión de eIF2α-P siendo significativo desde la hora de estímulo y logrando la máxima expresión desde las 3 horas de estímulo (1,6 veces con respecto al control, p<0,01). Del mismo modo llega hasta el nivel basal a las 24 horas de estímulo. Al estimular los FCNR con Tn 1µg/mL y TGFβ1 5ng/mL (Figura 9C), se observó que eIF2α-P disminuye su expresión con respecto al control, siendo esta significativa a las 3 horas (0,7 veces, p<0,05) de estímulo y manteniéndose así hasta las 24 horas.
Fig. 10. Determinación de los niveles de eIF2α-P cuando los FCNR son estimulados con Tn y TGFβ1. Inmuno western blot que muestra los cambios en la expresión de eIF2α-P. A) Muestra la expresión de eIF2α-P cuando los FCNR son estimulados con Tn 1µg/mL (*p<0,05 y **p<0,01 versus control), B) expresión de eIF2α-P cuando las células son estimuladas con TGFβ1 5ng/mL (*p<0,05 y **p<0,01 versus control) y C) expresión de eIF2α-P cuando los FCNR son pre-stimulados con TGFβ1 durante 1h y posteriormente estimulados con Tn 1µg/mL (*p<0,05 y **p<0,01 versus control). En la parte inferior de cada uno de los western biots se muestra su respectiva cuantificación. β-tubulina se utilizó como control de carga. Los resultados muestran la media ± SD para tres experimentos independientes.
6.3.4 Efecto sobre la expresión de CHOP

En condiciones basales se observa que los FCNR no expresan niveles detectables de la proteína CHOP. Sin embargo, al estimular los FCNR con Tn 1 µg/mL (Figura 10A) se observó un aumento en la expresión de la proteína CHOP desde las 6 horas y siendo máxima a las 12 horas de estímulo (p<0,001), para luego comenzar a decaer a las 24 horas. Por el contrario, los FCNR que fueron tratados con TGFβ1 (Figura 10B) no presentaron, a ninguno de los tiempos de exposición, expresión de CHOP. Esto se corroboró usando una muestra tratada con Tn 1 µg/mL por 12 horas como control positivo. Cuando los FCNR fueron pre-estimulados con TGFβ1 5 ng/mL y luego con Tn 1 µg/mL (Figura 10C), se observó un aumento temporal en la expresión de CHOP, que comienza a la hora de estímulo y que mantiene un aumento progresivo en el tiempo llegando a presentarse la máxima expresión a las 24 horas de estímulo (p<0,001).
Fig. 11. Determinación de los niveles de CHOP cuando los FCNR son estimulados con Tn y TGFβ1. Immunoblot que muestra los cambios en la expresión de CHOP. A) Muestra la expresión de CHOP cuando los FCNR son estimulados con Tn 1µg/mL (**p<0,001 versus control). B) expresión de CHOP cuando las células son estimuladas con TGFβ1 5ng/mL (**p<0,001 versus control) y C) expresión de CHOP cuando los FCNR son pre-estimulados con TGFβ1 durante 1h y posteriormente estimulados con Tn 1µg/mL (**p<0,001). En la parte inferior de cada uno de los western blots se muestra su respectiva cuantificación. β-tubulina se utilizó como control de carga. Los resultados muestran la media ± SD para tres experimentos independientes.
6.4 Efecto de Tn y TGFβ, sobre la secreción de colágeno

Para determinar si Tn es capaz de alterar la secreción de colágeno de los FCNR, estos fueron estimulados con Tn 0,1 y 0,5 µg/mL por un periodo de 48 horas. Los FCNR se pre-incubaron con TGFβ1 5 ng/mL durante 1 hora, para luego ser estimulados con Tn 0,1 y 0,5 µg/mL por 48 horas. Se recolectaron los medios de cultivo y los extractos celulares y se procedió tal como se describe en materiales y métodos para realizar la determinación de colágeno soluble y los inmuno western blots respectivamente.

6.4.1 Efecto de Tn y TGFβ1 sobre la secreción de colágeno soluble

En los FCNR que fueron estimulados con TGFβ1 se observa un significativo aumento en la secreción de colágeno (1,8 veces respecto el control, p<0,001) mientras que en aquellos estimulados sólo con Tn 0,1 y 0,5 µg/mL se observa una clara disminución en la secreción de colágeno soluble a las 48 h (2,7 y 5,2 veces menos que el control p<0,001). Cuando las células son pre-incubadas con TGFβ1 y luego tratadas con Tn 0,1 y 0,5 µg/mL, no se observa ninguna diferencia en la secreción de colágeno soluble respecto de las células tratadas solo con Tn (Figura 11A), indicando que Tn reduce significativamente la secreción de colágeno ya sea en condiciones basales o la estimulada por TGFβ1.

6.4.2 Efecto de Tn y TGFβ1 sobre la expresión de CHOP.

Para demostrar que a las concentraciones de Tn 0,1 y 0,5µg/mL, había presencia de proteínas marcadoras de estrés de RE, se midió el cambio de expresión en la proteína CHOP (Figura 11B), obteniéndose como resultado que Tn 0,1 y 0,5µg/mL inducen la expresión de esta proteína en los FCNR a las 48 horas. De la misma forma se obtuvo que los FCNR pre-estimuladas con TGFβ1 también presentan expresión de CHOP, aunque en menor cantidad que Tn sola.
Fig. 12. Efecto de Tn y TGFβ₁ sobre la secreción de colágeno soluble y la expresión de CHOP. FCNR estimulados con Tn 0,1 y 0,5μg/mL y TGFβ₁ 5ng/mL. En la figura 11A se muestra la cuantificación del colágeno soluble en los medios de cultivo (**p<0,001 versus control). En la figura 11B se observa el inmunoblot para la proteína CHOP y bajo este, su respectiva cuantificación. Los resultados muestran la media ± SD para tres experimentos independientes (**p<0,001).
7. DISCUSIÓN

Los resultados obtenidos en nuestro trabajo nos indican que: a) los FCNR experimentan pérdida de la viabilidad celular por apoptosis al ser estimulados con Tn, b) la disminución en la viabilidad celular fue revertida por TGFβ₁, c) TGFβ₁ es capaz de adaptar a los FCNR al estrés de RE inducido por Tn, y finalmente d) TGFβ₁ no es capaz de revertir la disminución en la secreción de colágeno inducida por efecto de Tn.

7.1 Efecto de Tn sobre la viabilidad celular

Hasta la fecha no existen trabajos en la literatura que indaguen si el estrés de RE afecta la viabilidad de los fibroblastos cardiacos. Los resultados obtenidos en nuestro laboratorio confirman que Tn tiene efectos negativos sobre la viabilidad celular de FCNR de un modo tiempo y concentración dependiente. Está bien documentado en la literatura que el antibiótico Tn produce estrés de retículo endoplasmático e induce la pérdida en la viabilidad celular(16, 45, 46, 47). La mínima concentración de Tn para reducir significativamente la viabilidad de fibroblastos cardiacos a las 24h fue 5 μg/mL. Estos resultados son similares a los obtenidos por Hetz et al., estimulando células N2A con Tn 2 y 20 μg/mL(48) y a los de Lin JH et al, en células HEK 293 estimuladas con Tn 5 μg/mL(16). Sin embargo, para evaluar el efecto del tiempo de exposición a Tn sobre la viabilidad, decidimos utilizar una concentración de Tn de 1μg/mL, debido a que a mayores concentraciones la elevada pérdida de la viabilidad celular no nos permitió evaluar en una escala temporal más larga el efecto de Tn. Aún así, la viabilidad celular se vio disminuida notablemente por efecto de la Tn a las 48 horas. Resultados similares han sido descritos en otros tipos celulares a concentraciones de Tn similares e incluso menores(49) o mayores(16, 48). Lo anterior induce a pensar que los FCNR son sensibles a los efectos deletéreos de Tn debido quizás a la alta carga sintética de proteínas de la MEC. Finalmente, nuestros resultados indican que Tn induce apoptosis de los FCNR. En varios tipos celulares se ha demostrado que Tn induce apoptosis(18, 50). Si se comparan los resultados de viabilidad celular por conteo celular con los datos de apoptosis, los porcentajes de muerte no coinciden completamente (aunque la tendencia se mantiene) debido, probablemente, a que una vez que se forman los cuerpos apoptóticos, las fragmentos celulares son degradados en el medio de cultivo, lo que impide identificar al total de células apoptóticas por incorporación de ioduro de propidio.
7.2 Tn induce estrés de retículo endoplasmático en FCNR

Nuestros resultados muestran que en FCNR estimulados con Tn, existe activación de las vías sensoras de estrés de RE. En la literatura se ha demostrado Tn activa en forma conjunta todas las vías sensoras de estrés de RE\(^{(16)}\), aunque puede existir una diferente temporalidad en la activación de cada una de las vías sensoras de estrés de RE. Sin embargo, se sabe que la primera vía en activarse en respuesta al estrés de RE es la vía de PERK para disminuir la traducción de proteínas por fosforilación del factor eIF2\(\alpha\)\(^{30}\), para luego continuar con el aumento en la expresión de las proteínas chaperonas y la expresión de CHOP\(^{(16)}\). Lin J. et al.\(^{(16)}\) ha demostrado que existe una temporalidad en la duración de los efectos de cada una de las vías sensoras de estrés de RE que se relaciona directamente con la sobrevida celular. La vía de IRE\(1\alpha\) se relacionaba con la sobrevida celular y la mantención de la actividad de la vía de PERK estaba relacionada directamente con la inducción de muerte celular por el aumento de la expresión en el tiempo de CHOP y la consecuente disminución de la fosforilación del factor eIF2\(\alpha\).

Para determinar la activación directa de la vía del sensor PERK, medimos los niveles de expresión de la proteína fosforilada eIF2\(\alpha\)-P. Tn indujo en FCNR un temprano y estable aumento en la expresión de esta proteína durante todo el tiempo que usamos en nuestros experimentos, resultados muy similares se encontraron en el trabajo de Lin J. et al\(^{(16)}\) usando células HEK 293 y en el trabajo de Kim S.J. et al\(^{(52)}\), en células MCF7.

Cuando hay estrés de RE se produce un aumento en la expresión normal de ciertas proteínas\(^{(13, 51)}\), entre ellas BiP, una chaperona residente del retículo y que es importante en la síntesis de colágeno\(^{(52)}\). En relación a esta, en nuestros ensayos encontramos que Tn produce un aumento temprano y progresivo en la expresión de BiP, lo que es coincidente con los trabajos existentes en la literatura en donde se aprecia un aumento temporal de esta proteína\(^{(16, 31, 53)}\). Aunque no hay datos en la literatura sobre los cambios en la expresión de BiP por Tn en FCNR, la presencia de BiP en condiciones basales en FCNR se explica por su actividad como chaperona necesaria para la síntesis de colágeno junto a la chaperona PDI y a la proteína de choque térmico HSP47\(^{(54)}\). Junto a lo anterior, Tn también indujo en FCNR la expresión de la proteína PDI, chaperona residente del retículo encargada de la formación de los puentes disulfuro de las proteínas\(^{(26)}\), y en FCNR es esencial en la síntesis de colágeno, ya que forma los puentes disulfuros en la región C y N Terminal de las hebras de colágeno, y a su vez forma parte de la enzima 4-
prolilhidroxilasa (C-P4H), que es la responsable de la hidroxilación de los residuos de prolina presentes en la estructura de procollágeno, siendo PDI la subunidad β de esta proteína\(^{26,27}\). Estos resultados son coincidentes con algunos trabajos en donde se observa el aumento en la expresión de PDI en otros tipos de células que presentan estrés de RE\(^{46,55}\), aunque este aumento no siempre lleva a la sobrevida celular y no está claro cuando es que las vías de salvataje se ven sobrepasadas y se llega a la muerte celular. Sin embargo, recientemente se ha demostrado en tejido de corazones humanos infartados, que PDI se expresa en regiones infartadas y no en las regiones remotas, lo que indica su participación en el proceso de cicatrización\(^{24}\). Por otro lado, también se ha demostrado en corazón de ratones que la sobreexpresión de PDI protege a los cardiomiocitos de la muerte celular producida como consecuencia de un daño por infarto. Nuestros resultados, y otros, fortalecen el concepto de un efecto citoprotector de las chaperonas BiP y PDI en corazón y específicamente en fibroblastos cardiacos. Sin embargo, a pesar que se induce la expresión de las chaperonas para reducir el estrés, éstas son sobre pasadas por las vías de muerte conduciendo a la pérdida de la viabilidad celular.

Cuando existe la activación de los sensores de estrés de retículo, las respectivas cascadas de señalización que cada uno de estos sensores activa, llevan a la expresión de una proteína en común denominada CHOP que es un potente factor de transcripción\(^{30}\). PERK es el principal inductor de CHOP, ya que esta vía lleva a la expresión del factor de transcripción ATF4 que se une directamente al promotor de CHOP\(^{56}\). Se ha considerado que la presencia de esta proteína es un indicador claro de la existencia de estrés de RE. En muchos estudios se ha evaluado la presencia de la proteína CHOP, ya que esta, además de ser inducida cuando hay estrés de RE\(^{57,58}\), se ha relacionado directamente con la inducción de apoptosis\(^{59,60}\). Nuestros resultados muestran que en estado normal los FCNR no expresan niveles detectables de la proteína CHOP, pero cuando son estimulados con Tn se aprecia una notable expresión de esta proteína a las 12 horas de estímulo, resultados similares se han observado en otros trabajos a tiempos muy similares cuando se estimula con tapsigargina o con Tn\(^{31,58}\).

Colectivamente, nuestros resultados, muestran que existe una correlación entre la expresión de las proteínas que tratan de hacer frente al estrés demostrado por una temprana expresión de eIF2α-P, BiP y PDI; mientras que por otro lado, también
demostramos la tardía expresión de CHOP que antecede a los eventos de muerte inducidos por Tn.

7.3 Efecto de TGFβ₁ sobre la viabilidad celular

TGFβ₁ es una importante citocina en fibroblastos cardiacos, induciendo la expresión de proteínas de la MEC. Además, posee efectos antiapoptóticos⁴², ⁴³ y efectos proapoptóticos⁴¹ sobre los fibroblastos cardiacos. En nuestros resultados, no observamos una disminución de la viabilidad celular cuando los FCNR fueron estimulados con TGFβ₁. Del mismo modo, tampoco observamos aumento en la proliferación celular lo que nos indica que TGFβ₁ no tiene efecto alguno sobre la viabilidad de los FCNR debido a que TGFβ₁ induce la diferenciación de los FCNR a miofibroblastos cardiacos inhibiendo su proliferación mediante la inhibición en la síntesis de DNA en forma irreversible⁶¹.

7.4 Efecto de TGFβ₁ sobre la expresión de proteínas de estrés de retículo endoplasmático

No existe ningún trabajo en la literatura donde se indague si TGFβ₁ es capaz de producir algún cambio en la expresión de las proteínas propias de estrés de RE. Se sabe que TGFβ₁ induce la síntesis de colágeno en los fibroblastos cardiacos³⁵ y que junto con esto, produce un aumento en la expresión de PDI³⁹. Nuestros resultados muestran que TGFβ₁ produce un claro aumento en la expresión de eIF2α-P en los FCNR. A su vez, Zhang et al.⁶² demostraron que la activación de la vía PERK, que lleva a la fosforilación de eIF2α, es esencial para la proliferación y diferenciación de ciertos tipos celulares como las células β-pancreáticas, puesto que se sabe que esta vía de señalización es requerida para el control fisiológico normal de la síntesis proteica³⁰. Estos resultados sugerirían que TGFβ₁ en FCNR induce la fosforilación de eIF2α con el fin de lograr la transdiferenciación desde fibroblastos a miofibroblastos.⁶³, ⁶⁴, ⁶⁵. Otra probable explicación para la inducción en la fosforilación de eIF2α por TGFβ₁, es que esto lleva a la consecuente disminución en la síntesis proteica para disminuir la sobrecarga en el RE, aunque este resultado se opone a los efectos clásicos de TGFβ₁ que es inducir la síntesis y secreción de proteínas de la MEC, a fin de evitar un excesivo estrés de RE y de esta forma evitar la muerte celular, indicando que ello podría ser un mecanismo de autocontrol.
En la literatura se ha demostrado que la síntesis de colágeno requiere de las chaperonas HSP47, BiP y PDI\(^{(25, 26, 27)}\) y que TGFβ\(_1\) induce la expresión de HSP47\(^{(39)}\) junto con aumentar la síntesis de colágeno\(^{(35)}\). Consecuente con lo anterior, nuestros resultados muestran que TGFβ\(_1\) induce la expresión de las proteínas BiP y PDI en los FCNR de manera tiempo dependiente, siendo el aumento en la expresión más temprano para PDI que para BiP, ya que en esta última el aumento se ve a tiempos más tardíos. El controlado aumento en la expresión de estas chaperonas por efecto de TGFβ\(_1\) indica que ambas chaperonas participan de manera específica en la síntesis de colágeno como fue demostrado por Nakata et al\(^{(54)}\). Estos resultados de TGFβ\(_1\) se contraponen a los encontrados por Novosyadlyy et al\(^{(38)}\), quien demostró que IGF1 no induce aumento en la expresión de BiP. Sin embargo, en fibroblastos cardíacos ambos estímulos son capaces de inducir la síntesis de colágeno\(^{(66)}\), proteína que requiere de las chaperonas BiP y PDI; por lo anterior, el efecto diferente de estos factores de crecimiento podría deberse tanto al diferente tipo celular como al tipo de estímulo.

Como se mencionó anteriormente, la expresión de CHOP es un indicador claro de la existencia de estrés de RE ya que las tres vías de señalización relacionadas con este, llevan a la expresión de este potente factor de transcripción, en especial la vía de PERK. En nuestros resultados TGFβ\(_1\) induce la expresión de eIF2α-P, lo que indica que la vía de señalización del sensor PERK está activa, sin embargo, TGFβ\(_1\) no induce la expresión detectable de la proteína CHOP en los FCNR, resultado que es consecuente con la falta de efecto de TGFβ\(_1\) sobre la viabilidad celular. De manera similar, Novosyadlyy et al\(^{(38)}\) demostraron que IGF-1 tampoco induce la expresión de CHOP en las células MCF-7. Por otro lado, estos mismos autores demostraron que IGF-1 indujo la expresión de esta proteína en células NIH/3T3. Lo anterior indica que los factores de crecimiento producen diferente expresión de proteínas dependiendo del tipo celular y al mismo tiempo que la expresión de CHOP no siempre está asociado a fenómenos de muerte celular, y que ello es dependiente del estímulo y tipo celular.

Recientemente se ha demostrado que IGF-1 protege de la apoptosis inducida por estrés de RE. En este sentido, nuestros promisorios resultados muestran que el pre-tratamiento de los FCNR con TGFβ\(_1\) protege de la pérdida en la viabilidad celular inducida por Tn en forma dosis y tiempo dependiente, lo que se explicaría porque mayores concentraciones de TGFβ\(_1\) producirían un efecto más prolongado en el tiempo, siendo este capaz de revertir la pérdida de la viabilidad. Sin embargo, nuestros resultados también muestran
que a mayores concentraciones de Tn se activa un estrés de RE más severo y prolongado debido a que Tn permanece en el medio produciendo estrés de RE ya que se ha demostrado que este antibiótico conserva sus efectos por un tiempo prolongado\(^{16}\). El pre tratamiento con TGF\(\beta_1\) potencia en forma significativa la disminución en la fosforilación del factor eIF2\(\alpha\) durante todo el periodo de estimulo y junto con esto, produce un aumento considerable en la expresión de CHOP en forma tiempo dependiente, a diferencia de TGF\(\beta_1\) que por sí solo no produce un aumento detectable en la expresión de CHOP. La expresión diferencial de eIF2\(\alpha\)-P y CHOP está directamente relacionada ya que el aumento en la expresión de esta última, lleva al consecuente aumento en la expresión de GADD34, proteína que regula la desfosforilación de eIF2\(\alpha\)^\(13, 60\), lo que resulta en una reactivación de la traducción de los mRNA que codifican para las chaperonas como BiP y PDI. Lo anterior sugeriría que TGF\(\beta_1\) produce una respuesta adaptativa al estrés de RE puesto que en nuestros resultados estas dos chaperonas aumentan su expresión significativamente cuando los FCNR son pre-estimulados con TGF\(\beta_1\). Junto con esto, el aumento en la expresión de CHOP se relaciona directamente con un incremento en la respuesta adaptativa ya que los principales genes regulados por este factor son ERO1\(\alpha\) y GADD34 que se relacionan directamente más con la sobrevida celular que con la muerte celular por apoptosis\(^{38}\), efecto que a quedado demostrado en los trabajos de Southwood et al.\(^{67}\), Yusta et al.\(^{68}\) y Novosyadlyy et al.\(^{38}\), en donde el aumento en la expresión de CHOP se relaciona con un efecto antiapoptótico.

En un principio, se mencionó que al presentarse estrés de RE, las células respondían disminuyendo la síntesis de nuevas proteínas para disminuir la sobrecarga sobre el RE. De esta forma, una célula tan secretora como lo es el FCNR debe ver disminuida la síntesis y secreción de sus proteínas, principalmente de colágeno como mecanismo de adaptación. Consecuentemente con esto, nuestros resultados muestran que menores concentraciones de Tn, concentraciones a las cuales no se observa muerte celular, son capaces de inducir estrés de RE, lo que se ve reflejado en un aumento marcado en la expresión de CHOP y, junto con esto, son capaces de disminuir la secreción de colágeno al medio extracelular lo que se relaciona directamente con una disminución en la síntesis de esta proteína de la MEC. Al mismo tiempo nuestros resultados muestran que en los FCNR estimulados con TGF\(\beta_1\), este no revierte la disminución en la secreción de colágeno al medio, lo que apoya más el hecho de que al pre-estimular con TGF\(\beta_1\) se produce una adaptación al estrés de RE para impedir la muerte celular más que una
normalización de los procesos normales de la célula como la secreción de proteínas de la MEC.

Finalmente, los antecedentes descritos, nos llevan a asegurar que TGFβ1 tiene un efecto citoprotector en los FCNR frente al estrés de RE, lo que confirma nuestra hipótesis. Junto con esto es necesario dilucidar en trabajos futuros, el o los mecanismos moleculares por los cuales el TGFβ1 es capaz de adaptar a los FCNR al estrés de RE.

Perspectivas

1. Estudiar si el efecto de TGF beta es específico en FCNR o también se presenta en otros tipos celulares.

2. Estudiar las vías de señalización de TGFβ1 involucradas en el efecto "anti" estrés de RE.

3. Estudiar si IGF-1 es capaz de demostrar los mismos efectos "anti" estrés de RE en FCNR.

4. Estudiar si las proteínas de estrés pueden ser probables blancos terapéuticos capaces de controlar el proceso de cicatrización post infarto.

5. Estudiar si otros agentes son capaces de modular el estrés de RE para producir los mismos efectos que TGFβ1.
8. Conclusiones

1. Tn induce pérdida en la viabilidad celular de los FCNR en forma tiempo y dosis dependiente.

2. La muerte celular inducida por Tn es a través de un fenómeno apoptótico.

3. Tn induce estrés de RE en los FCNR y con ello disminuye la secreción de proteínas de matriz.

4. TGFβ1 previene de la muerte inducida por Tn.

5. TGFβ1 adapta a los FCNR al estrés de RE.
9. Modelo propuesto del efecto citoprotector de TGFβ₁ sobre la apoptosis inducida por Tn

![Diagrama de TGFβ₁ y apoptosis]

Durante el estrés de RE, TGFβ₁ produce la activación de la vía PERK/elf2α-P/CHOP aunque produce la disminución en eIF2α-P debido al aumento en la expresión de CHOP que produce el consecuente aumento en la expresión de GADD34, proteína que induce la defosforilación de elf2α-P, restaurando la actividad de elf2. Esto representa el mecanismo que reprograma al RE para pasar de su carga normal de proteínas secretoras a la síntesis de proteínas de estrés de RE, aumentando la capacidad plegadora del RE.
BIBLIOGRAFIA

1. Ministerio de salud, 2004
2. Organización Mundial de la Salud, 55ª Asamblea Mundial de la Salud, A55/16, punto 13.11, 27 de Marzo de 2002

