EVOLUCIÓN DE LA RANCIDEZ OXIDATIVA Y LA FRESCURA DEL MÚSCULO DE SALMÓN COHO (Oncorhynchus kisutch) ALIMENTADO CON DIETAS ADICIONADAS DE ANTIOXIDANTES NATURALES Y CONSERVADO AL ESTADO CONGELADO (-18ºC)

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO EN ALIMENTOS

GABRIELA CAROLINA CONCHA MOYA
JUAN PABLO VIVANCO LOVAZZANO

Santiago, Chile

2006
LA PRESENTE MEMORIA FORMA PARTE DEL PROYECTO DE INTERCAMBIO CSIC-22/05-05 DE LA UNIVERSIDAD DE CHILE CON EL INSTITUTO DE INVESTIGACIONES MARINAS (IIM) DEL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS DE ESPAÑA (CSIC).

ESTA MEMORIA DIO ORIGEN A UN TRABAJO PRESENTADO EN LAS VII JORNADAS DE INVESTIGACIÓN DE LA FACULTAD DE CIENCIAS QUÍMICAS Y FARMACÉUTICAS DE LA UNIVERSIDAD DE CHILE TITULADO “VARIACIÓN DE LAS PROPIEDADES QUÍMICAS DE SALMÓN COHO (Oncorhynchus kisutch) H G ALIMENTADO CON DIFERENTES DIETAS Y CONSERVADO AL ESTADO CONGELADO (-18ºC) DURANTE UN AÑO”.

ABRIL 2006.
"Intenta no volverte un hombre de éxito, sino volverte un hombre de valor" (Albert Einstein).

“No hay que confundir nunca el conocimiento con la sabiduría. El primero nos sirve para ganarnos la vida; la sabiduría nos ayuda a vivir” (Sorcha Carey).
AGRADECIMIENTOS

A nuestros padres, hermanos y familias, por su dedicación y apoyo durante la realización de este trabajo y a lo largo de nuestras vidas.

A la señora Julia Vinagre Leiro, nuestra profesora patrocinante, por sus enseñanzas, amistad, orientación, sabios consejos y por confiarnos la realización de esta investigación.

A todos los profesores que aportaron en nuestra formación profesional y humana a lo largo de la carrera. En especial a Vilma Quitral, Mª Angélica Larraín, Jaime Ortiz, Alicia Rodríguez, Emma Wittig de Penna, Andrea Bunger e Irma Pennacchiotti, por su valiosa e importante colaboración y ayuda durante la realización de esta tesis.

A nuestros compañeros de estudio y amigos: Mª Salomé, Paula Venegas, Maureen, Nicolás, Virginia, Verónica, Edmund, Pamela, Paula Vera, Marlene, Mariel, Paula Lichtenberg, Roxana, Andrea, Christian, Ingrid, Juan, Marcela, Fernando, Carolina, Rodrigo, Yohanina, Luis y Alejandro por su alegría y amistad entregadas, durante la ejecución de la tesis y a lo largo de estos años de universidad.

A Álvaro Escalona, Magdalena Devia, Vanessa Pezoa y Cristian Encina, por su ayuda desinteresada durante el desarrollo de algunas de las técnicas empleadas en la realización de este trabajo.

Al resto de las integrantes del “team salmónido 2005”: Mónica Gajardo, Nelly Pacheco y Mónica Latorre, por contribuir en este proyecto y por hacer más amenas los días de muestreo.

A Martita, Don Manuel y Juan Carlos, por su gran ayuda en esos pequeños, pero importantes detalles que facilitaron nuestro trabajo en los laboratorios.
ÍNDICE GENERAL

AGRADECIMIENTOS .. iii
ÍNDICE GENERAL .. iv
ÍNDICE DE TABLAS ... vi
ÍNDICE DE FIGURAS .. vii
ABREVIATURAS .. viii
RESUMEN ... x
ABSTRACT ... xi

1. INTRODUCCIÓN .. 1
 1.1 Marco teórico ... 2
 1.1.1 Estadísticas del recurso .. 2
 1.1.2 Características de los salmones ... 4
 1.1.3 Congelación de pescados .. 5
 1.1.4 Fracción lipídica del salmón .. 6
 1.1.5 Oxidación lipídica en productos marinos ... 6
 1.1.5.1 Índice de peróxidos .. 7
 1.1.5.2 Valor de p-anisidina ... 7
 1.1.6 Antioxidantes ... 7
 1.1.6.1 Antioxidantes sintéticos .. 8
 1.1.6.1.1 Etoxiquina .. 8
 1.1.6.1.2 Butil hidroxi-tolueno (BHT) .. 8
 1.1.6.2 Antioxidantes naturales .. 9
 1.1.6.2.1 Tocoferoles .. 9
 1.1.6.2.2 Compuestos fenólicos ... 10
 1.1.7 Parámetros de calidad del músculo ... 11
 1.1.7.1 Composición proximal .. 11
 1.1.7.2 Nitrógeno básico volátil total (NBVT) .. 12
 1.1.7.3 Dimetilamina (DMA) y Formaldehído (HCHO) ... 12
 1.1.7.4 Valor pH .. 13
 1.1.8 Análisis de dietas para salmónidos ... 14

2. HIPÓTESIS DE TRABAJO ... 15
 2.1 Objetivo general ... 15
 2.2 Objetivos específicos ... 15

3. MATERIALES Y MÉTODOLOGÍA ... 16
 3.1 Materiales y equipos ... 16
 3.2 Metodología .. 16
 3.2.1 Diseño experimental ... 16
 3.2.2 Métodos .. 18
 3.2.2.1 Composición centesimal (en dietas y en músculo) .. 18
3.2.2.1.1 Humedad:.. 18
3.2.2.1.2 Materia grasa .. 18
3.2.2.1.3 Proteínas .. 18
3.2.2.1.4 Cenizas .. 18
3.2.2.1.5 Extracto no nitrogenado (ENN) .. 18
3.2.2.2 Ácidos grasos poliinsaturados EPA y DHA, e índice de polienes (en aceite de músculo)... 19
3.2.2.3 Rancidez (en aceite de músculo). .. 19
3.2.2.3.1 Índice de peróxidos ... 19
3.2.2.3.2 Valor de p-anísidina ... 19
3.2.2.4 Compuestos nitrogenados volátiles (en músculo) 19
3.2.2.4.1 Nitrógeno básico volátil total (NBVT).. 19
3.2.2.4.2 Dimetilamina (DMA) .. 19
3.2.2.4.3 Formaldehído (HCHO) .. 20
3.2.2.5 Valor pH (en músculo).. 20
3.2.2.6 Tocoferoles (en dietas y en aceite de músculo) 20
3.2.2.7 Estabilidad termooxidativa (en dietas) .. 20
3.2.3 Análisis estadísticos ... 20
4. RESULTADOS Y DISCUSIONES.. 21
4.1 Análisis y composición proximal de las dietas de engorda 21
4.2 Composición proximal del músculo de salmón al inicio y al final del estudio....23
4.3 Humedad de los salmones .. 24
4.4 Fracción lipídica de los salmones .. 24
4.5 Ácidos grasos poliinsaturados EPA y DHA, e índice de polienes en aceite de salmones... 25
4.6 Parámetros de lipoperoxidación primaria y secundaria en aceite de salmón coho... 28
4.6.1 Índice de peróxidos en aceite de salmones .. 29
4.6.2 Valor de p-anísidina en aceite de salmones .. 31
4.7 Nitrógeno básico volátil total (NBVT) en músculo de salmones.................. 32
4.8 Dimetilamina (DMA) en músculo de salmones .. 34
4.9 Formaldehído (HCHO) en músculo de salmones 35
4.10 Valor pH en músculo de salmones ... 37
4.11 Tocoferoles en aceite de salmones ... 38
4.11.1 α-tocoferol .. 38
4.11.2 γ-tocoferol .. 39
4.11.3 δ-tocoferol .. 40
5. CONCLUSIONES ... 43
6. BIBLIOGRAFÍA .. 45
ANEXOS .. 53
ÍNDICE DE TABLAS

Tabla N° 1.1: Exportaciones chilenas de salmónidos por especie 1994-2005 3
Tabla N° 4.1: Composición proximal, contenido de tocoferoles y estabilidad oxidativa de las dietas de engorda suministradas a salmón coho .. 21
Tabla N° 4.2: Composición proximal del músculo de salmones alimentados con las 3 dietas, al inicio y final del estudio ... 23
Tabla N° 4.3: Porcentaje de humedad de músculo de salmón coho alimentado con las 3 dietas, a través del tiempo .. 24
Tabla N° 4.4: Porcentaje de lípidos en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo .. 24
Tabla N° 4.5: Porcentaje de EPA (20:5 ω3) en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo .. 25
Tabla N° 4.6: Porcentaje de DHA (22:6 ω3) en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo .. 26
ÍNDICE DE FIGURAS

Figura Nº 1.1: Salmón coho (Oncorhynchus kisutch)... 4
Figura Nº 1.2: Estructura química de los tocoferoles ... 9
Figura Nº 1.3: Estructuras químicas del ácido carnósico (a) y del ácido rosmarínico (b)...10
Figura Nº 3.1: Diagrama que muestra el diseño experimental... 17
Figura Nº 4.1: Variación del índice de polienos en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo de almacenamiento... 27
Figura Nº 4.2: Variación del índice de peróxidos (IP) en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo de almacenamiento............................. 29
Figura Nº 4.3: Variación del valor p-anisidina en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo de almacenamiento congelado.............................. 31
Figura Nº 4.4: Variación del contenido de nitrógeno básico volátil total (NBVT) en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo de almacenamiento congelado.. 32
Figura Nº 4.5: Variación del contenido de dimetilamina (DMA) en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo.. 34
Figura Nº 4.6: Variación del contenido de formaldehído (HCHO) en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo de conservación al estado congelado... 35
Figura Nº 4.7: Variación del valor pH en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo de almacenamiento congelado... 37
Figura Nº 4.8: Variación de la concentración de α-tocoferol en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo.. 38
Figura Nº 4.9: Variación de la concentración de γ-tocoferol en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo.. 39
Figura Nº 4.10: Variación de la concentración de δ-tocoferol en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo... 40
ABREVIATURAS

α: Alfa
β: Beta
γ: Gamma
δ: Delta
ω: Omega
μg: Microgramo
et al.: Y otros
kg: Kilogramo
mEq: Miliequivalente
mg: Miligramo
ml: Mililitro
p.a.: Para análisis
pH: Potencial de hidrógeno
ADN: Ácido desoxirribonucleico
AGPICL: Ácidos grasos poliinsaturados de cadena larga
AHMT: 4-amino-3-hidrazino-5-mercapto-1,2,4 triazol
ANDEVA: Análisis de la variancia
APL: Acuerdo de producción limpia
BHA: Butil hidroxi-anisol
BHT: Butil hidroxi-tolueno
BVT: Bases volátiles totales
DHA: Ácido graso docosahexaenoico
DMA: Dimetilamina
EDTA: Ácido etilendiaminotetraacético
ENN: Extracto no nitrogenado
EPA: Ácido graso eicosapentaenoico
ESR: Electron spin resonance (Resonancia electrónica de spin)
FOB: Free on board (Libre a bordo)
GLC: Gas liquid chromatography (Cromatografía gas-líquido)
HCHO: Formaldehído
HG: Head on/ Gutted (Descabezado y Eviscerado)
HPLC: High performance liquid chromatography (Cromatografía líquida de alta resolución)
HSD: Honestly significant difference (Diferencia honestamente significativa)
IP: Índice de peróxidos
IRANOR: Instituto de Racionalización y Normalización (Actual Asociación Española de Normalización y Certificación, AENOR)
MINSAL: Ministerio de Salud
MM: Miles de millones
NBVT: Nitrógeno básico volátil total
NQC: Norwegian quality cut (Corte noruego de calidad)
OSI: Oil stability index (Índice de estabilidad oxidativa de aceites)
OTMA: Óxido de trimetilamina
OTMAasa: Óxido de trimetilamina demetilasa
P: Probabilidad estadística
PEE: Poliestireno Expandido
PP: Polipropileno
RAM: Recuento de aerobios mesófilos
SERNAPESCA: Servicio Nacional de Pesca
TCA: Ácido tricloroacético
TMA: Trimetilamina
US$: Dólares estadounidenses
USA: United States of America (Estados Unidos de América)
UE: Unión Europea (European Union, EU)
UV: Ultravioleta
RESUMEN

EVOLUCIÓN DE LA RANCIDEZ OXIDATIVA Y LA FRESCURA DEL MÚSCULO DE SALMÓN COHO
(Oncorhynchus kisutch) ALIMENTADO CON DIETAS ADICIONADAS DE ANTIOXIDANTES
NATURALES Y CONSERVADO AL ESTADO CONGELADO (-18ºC)

En la actualidad, Chile se ubica en el segundo lugar de los rankings de producción de salmónidos a nivel mundial, lo que convierte al salmón en el producto alimenticio más importante de nuestras exportaciones pesqueras y en el principal motor económico de las regiones X y XI del país. Por ello, cada vez se hace más importante contar con nueva información basada en investigación, que sea capaz de responder y adelantarse a potenciales problemas, que posibilite el mejoramiento de la calidad de los salmónidos y de los productos derivados de ellos. El empleo de antioxidantes en las dietas para salmónidos es fundamental para retardar su deterioro, puesto que las materias primas principales que se emplean para elaborarlas son harina y aceite de pescado, insumos muy susceptibles a sufrir los ataques de la peroxidación lipídica. Los antioxidantes que se emplean actualmente para elaborarlas son, en su mayoría, compuestos de origen sintético cuya inocuidad está siendo cada vez más cuestionada a nivel internacional.

Este estudio trata acerca del reemplazo de antioxidantes sintéticos por dos productos antioxidantes naturales inocuos (tocoferoles y extracto de romero (Rosmarinus officinalis)) en la dieta de Salmón coho (Oncorhynchus kisutch) de exportación y su efecto en la calidad del producto congelado durante 12 meses. Se consideró el empleo de 3 jaulas con salmones en cultivo de la Región X de Chile: los individuos de la primera jaula se alimentaron con la dieta control que contenía etoxiquina y BHT (Dieta I); los de la segunda se alimentaron con una dieta experimental que contenía un exceso de tocoferoles libres (Dieta II); y los de la tercera con otra dieta experimental que contenía una mezcla antioxidante de tocoferoles libres con extracto de romero (Dieta III), durante un tiempo de 80 días. Cumplido este tiempo, los salmones se sacrificaron y procesaron industrialmente, para obtener salmón congelado de exportación tipo HG y fueron enviados a Santiago para ser almacenados a -18ºC y oportunamente analizados.

Se analizaron cinco individuos con una frecuencia de 3 meses durante un año, a excepción de la composición proximal, que se efectuó en duplicado y solamente al inicio y al final del estudio. Los parámetros analizados periódicamente fueron: contenido de humedad, porcentaje de materia grasa, cuantificación de ácidos grasos poliinsaturados ω3, determinación del índice de polienucos, índice de peróxidos, valor de p-anisidina, valor-pH, nitrógeno básico volátil total (NBVT), dimetilamina, formaldehído y cuantificación de tocoferoles libres. En las tres dietas empleadas en el estudio se determinó la composición proximal, el contenido de tocoferoles libres y la estabilidad oxidativa.

Debido a que la gran mayoría de los parámetros de calidad analizados al utilizar las 3 dietas en estudio fueron estadísticamente equivalentes, y algunos incluso mejores con el empleo de las dietas experimentales; y a que ninguno de ellos fue afectado significativamente en forma negativa con las mismas, se concluye que el reemplazo de antioxidantes sintéticos por naturales en la dieta del Salmón coho (Oncorhynchus kisutch), es una alternativa factible a nivel técnico y recomendable si se desea ampliar el ingreso del salmón chileno a mercados cuyas tendencias estén a favor de una alimentación más natural y sana.

PALABRAS CLAVES: Antioxidantes, Salmón coho, frescura, rancidez oxidativa, dietas.
ABSTRACT

EVOLUTION OF OXIDATIVE RANCIDITY AND FRESHNESS OF MUSCLE OF COHO SALMON (Oncorhynchus kisutch) FED WITH DIETS ADDED OF NATURAL ANTIOXIDANTS AND CONSERVED TO THE FROZEN STATE (-18ºC)

At the present time, Chile is located in the second place in the ranking of salmon producers at world-wide level, which turns the salmon the more important nutritional product of our fishing exports and the main economic motor of regions 10th and 11th in the country. For that reason, every time becomes more important to count on new information based on investigation, that it is able to respond and go ahead to potential problems, developing improvement to the salmon quality and products derived from them. The use of antioxidants in the diets for salmons is fundamental to slow down its deterioration, since the main raw materials that are used to elaborate their food are fish meal and fish oil, products very susceptible to suffer the attacks of the lipid peroxidation. The antioxidants used at the moment are, in its majority, compounds of synthetic origin whose innocuity is been more and more questioned at international level.

This research treats about the replacement about synthetic antioxidant by two natural and innocuous antioxidant products: tocopherols and extract of rosemary (Rosmarinus officinalis) in the diet of coho salmon (Oncorhynchus kisutch) for export and its effect in the chemical properties of the frozen product during 12 months, for that the team worked in the 10th region of Chile, where the use of 3 cages with salmons in culture was considered for the present research: the salmons of the first cage, fed with the diet control that contained synthetic antioxidant (Diet I), the salmons in the second cage, fed with an experimental diet that contained an excess of free tocopherols (Diet II) and those on third cage were fed with another experimental diet that contained an antioxidant mixture of free tocopherols with rosemary extract (Diet III), during a total time of 80 days. After that time, the salmons were sacrificed and processed industrially to obtain frozen coho salmon for export - type HG and were sent to Santiago to be stored at -18ºC and opportune analyzed.

Five individuals were analyzed with a frequency of 3 months for a period of one year, with the exception of the proximal composition, that only took place in duplicate, and only at the beginning and at the end of the study. The parameters analyzed were: humidity content, fat content, polyunsaturated fatty acids ω3, determination of polyene index, peroxide value, p-anisidine value, pH value, total volatile base nitrogen (TVBN), dimethylamine, formaldehyde and quantification of free tocopherols. Also the proximal composition, the content of free tocopherols and the oxidative stability was determined of the 3 diets employed in this research.

As the great majority of the analyzed parameters of quality when using the 3 diets in study were statistically equivalent and some even better with the use of the experimental diets, and that no one of them was affected significantly in negative form with the same ones, the replacement of synthetic by natural antioxidant in the diets of coho salmon (Oncorhynchus kisutch) it is a feasible alternative at technical level and quite recommendable if it is desired to extend the entrance of the Chilean salmon to markets whose tendencies are in favor of a more natural and healthier feeding.

KEYWORDS: Antioxidants, coho salmon, freshness, oxidative rancidity, diets.
1. INTRODUCCIÓN

Desde los comienzos de la humanidad, el pescado se ha utilizado como una fuente de alimento altamente nutritiva y fácilmente disponible. En la actualidad, los seres humanos consumen una cantidad superior a 1000 especies de pescados y mariscos, de diversos hábitats y regiones geográficas de todo el mundo (Fraser y Sumar, 1998a).

El salmón, viene utilizándose como alimento del hombre desde hace mucho tiempo, según han demostrado los grabados hallados en Francia en las paredes de las cavernas, cuya época se remonta a unos 12.000 años; este salmón era probablemente el Salmón del Atlántico (Salmo salar): éste fue también el primer salmón comercializado e industrializado en Europa occidental y en los Estados Unidos orientales en sus formas fresca, salazonada y ahumada, mientras que en 1864 se estableció la primera factoría enlatadora de salmón (Yonker, 1968).

La acuicultura ha abierto interesantes posibilidades de ejercer control sobre los factores que afectan la calidad nutritiva y el valor alimenticio de los productos del mar (Gribbestad et al., 2005). En los últimos años, la acuicultura chilena ha mostrado un desarrollo impresionante y un incremento sostenido en sus exportaciones, sobretodo en las de salmones y truchas, ésto gracias al esfuerzo dedicado a la investigación, a la introducción de nuevas familias de salmones y al desarrollo de transferencia tecnológica y de productos, consolidándose como un competidor muy fuerte frente a países como Noruega (Anónimo, 2000; Bjorndal, 2000). Además, durante el 2005, el sector salmonicultor finalizó con éxito el acuerdo de producción limpia (APL), el que ha generado la entrega de los primeros certificados en Chile (Águila, 2006).

Los antioxidantes sintéticos son los más ampliamente utilizados en las dietas de salmónidos, sin embargo, la seguridad de éstos está actualmente cuestionada y su uso en la industria alimentaria está seriamente restringido por ley, tanto en su aplicación como en su nivel de uso; ésto ha estimulado a evaluar la efectividad de compuestos naturales que poseen propiedades antioxidantes (Valenzuela y Nieto, 1996; Ollanketo et al., 2002).
Los laboratorios de investigación y las empresas piscicultoras se han preocupado de desarrollar y probar nuevas alternativas para la alimentación de salmónidos. Estas dietas han demostrado buenos resultados bajo condiciones experimentales y de producción y es importante que éstas se elaboren con ingredientes de alta calidad, particularmente harina y aceite de pescado (National Research Council, 1993).

El salmón congelado, es un producto que está ganando cada vez más aceptación en los mercados internacionales. Para expandir la participación de la industria salmonera chilena en dichos mercados se hace necesaria la aplicación de tecnología de punta y de mejores sistemas de congelación, la búsqueda de empaques atractivos y mejores alternativas de ventas, escuchando siempre las necesidades del mercado (García, 2005).

1.1 Marco teórico

1.1.1 Estadísticas del recurso

El cultivo del salmón es la principal actividad acuicultora en Chile, y uno de los pilares de nuestra economía: durante el año 2005, Chile se ubicó en el segundo lugar en la producción de salmónidos a nivel mundial. Estos pescados representaron el 20,2% de los envíos de alimentos chilenos al exterior durante el mismo año, lo cual no sólo es un logro tecnológico y económico de la industria acuícola nacional, sino que también ha convertido al salmón en un pez de mayor disponibilidad para gran parte de nuestra población (Valenzuela, 2005; Anónimo, 2006; SalmonChile, 2006). La producción de salmones y truchas cultivados en Chile llegó a 614.000 toneladas durante el mismo año, lo que corresponde al 38% del total mundial, siendo superado sólo por Noruega, que tuvo un 39,1% de la producción mundial; les siguen el Reino Unido, Canadá, las Islas Faroe, Australia, Finlandia e Irlanda (SalmonChile, 2006). Las variedades de cultivo intensivo más importantes de la acuicultura chilena son el Salmón del Atlántico (Salmo salar), el Salmón del Pacífico (Oncorhynchus kisutch), también conocido como Salmón coho y la trucha arcoiris (Oncorhynchus mykiss) (Valenzuela, 2005; SalmonChile, 2006).

La producción nacional de Salmón coho congelado durante el año 2005 fue de 58.700 toneladas, lo que corresponde al 57,3% del desembarque total nacional para dicha especie (SERNAPESCA, 2006a).
La tabla Nº 1.1 señala las exportaciones chilenas de salmónidos por especie entre los años 1994-2005, donde se observa que en el último año, el Salmón coho ocupa el segundo lugar, después del Salmón del Atlántico. Ésto se explica debido a que la producción del Salmón del Atlántico es continua durante todo el año, en cambio la producción del Salmón del Pacífico es estacional, concentrándose principalmente durante los meses de verano (Valenzuela, 2005).

El sector salmonicultor nacional volvió a romper récords durante el 2005, al conseguir retornos de US$ 1.721 millones FOB por concepto de exportaciones, lo que corresponde a un incremento del 20% en comparación con el 2004; también es importante mencionar que el salmón chileno es reconocido como un producto sano y accesible a cualquier consumidor (Águila, 2006).

Los principales mercados de destino de los salmones y truchas chilenos durante dicho año fueron: Japón, Estados Unidos/Puerto Rico, Alemania, Brasil, Tailandia, Francia, Rusia, la República Popular China, Dinamarca, Taiwán, Israel y México (SalmonChile, 2006).

Los salmónidos congelados están captando la atención de la industria pesquera nacional: han aumentado en forma constante sus exportaciones y, según salmonicultores y comercializadores, pueden convertirse en la nueva lumbrera de la acuicultura chilena (García, 2005). El 95% de las ventas de Salmón coho del 2005 fueron destinadas al mercado japonés, casi totalmente como filete congelado (Águila, 2006).
1.1.2 Características de los salmones

Los salmones pertenecen a la familia *Salmonidae*, del orden Salmoniformes. Esta familia comprende varios géneros: *Salmo* (Salmón del Atlántico, trucha), *Oncorhynchus* (Salmones del Pacífico: rosa, sockeye, coho, chum, cherry y chinook), *Hucho* (Salmón del Danubio), *Salvelinus* (trucha alpina) y *Brachymystax*. Se encuentran entre los pescados más apreciados, debido al delicado sabor de su carne rosada, y se les capture tanto en los ríos (donde constituye el objeto de una apasionante modalidad de pesca deportiva) como en el mar. También se crían artificialmente en jaulas. Los salmones son anádromos, ya que el desove, eclosión de los huevos y su primera alimentación se realizan en agua dulce; pero aproximadamente al año de edad (cuando se convierten en smolts) son capaces de vivir en agua salada, regresando más adelante al agua dulce para el desove (Pike *et al*., 1990).

El nombre científico del salmón plateado o coho es *Oncorhynchus kisutch* (Walbaum, 1792); posee un cuerpo fusiforme y robusto. La distribución natural de esta especie es el Pacífico norte, donde realiza ciclos migratorios desde las costas de Norteamérica hasta las costas de Asia. En Chile se introdujo para fines de cultivo (SERNAPESCA, 2002).

Cuando se alimentan en el mar, su color es azul metálico o verde con unas pocas manchas pardas presentes en los lados posteriores y superiores. Al desovar en agua dulce, su piel se torna de color amarillo verdoso con listas rojas o rosadas a los lados. La mayoría de las especies desovan en invierno y lo hacen en un breve período de tres a cinco días. Tanto los machos como las hembras, se mueren pronto después del desove. Se comercializa principalmente fresco-refrigerado, seco-salado, ahumado, enlatado, curado y congelado (Luna, 2006).

1.1.3 Congelación de pescados

El pescado crudo es un alimento con un elevado contenido de agua biológicamente activa, por lo que se deteriora muy rápidamente. Las mayores causas de alteración son; el crecimiento microbiano, la actividad enzimática y las reacciones químicas que se originan por interacciones entre nutrientes o con otros componentes (Navarro, 1991b).

La congelación y posterior almacenamiento congelado de pescados es uno de los métodos más utilizados para conservarlos. Esto permite almacenarlos cuando abundan, cuando escasean o cuando hay prohibición de pesca. El congelado más preciado u óptimo es el que se practica a bordo de los barcos al instante después de la pesca, lo que impide el deterioro del pescado (Godiksen y Jessen, 2001; COMEPEZ, 2003).

Aunque la congelación y almacenamiento en frigorífico son un buen medio de conservar el pescado, se ha de insistir en que no mejora la calidad del producto, la cual dependerá de la calidad que presenta la materia prima antes de la congelación y de otros factores que intervienen durante la congelación, almacenamiento y distribución (FAO, 1977).

Las dificultades para exportar salmón fresco y refrigerado han motivado que algunas empresas nacionales concentren sus energías en las presentaciones congeladas, un producto más fácil de transportar y que puede llegar a tener una calidad superior a la de un salmón fresco, si ha sido manejado en forma eficiente (García, 2005).
1.1.4 Fracción lipídica del salmón

El salmón pertenece a los llamados "peces azules", que son aquéllos que tienen un alto contenido de tejido adiposo, por lo cual se les llama también "peces grasos". Un aspecto destacable de la carne de salmón, es su alto aporte de los dos principales ácidos grasos poliinsaturados de cadena larga (AGPICL) omega-3: El ácido eicosapentaenoico (C20:5, EPA), y el ácido docosahexaenoico (C22:6, DHA). Además, es el único de los pescados grasos disponibles para nuestro consumo que aporta más DHA que EPA (Valenzuela, 2005).

El salmón se caracteriza por tener un sabor distintivo, el cual se cree que está asociado a sus componentes lipídicos y a los pigmentos carotenoides contenidos en su carne que reaccionan con los ácidos grasos; el aroma a salmón está asociado a compuestos del tipo alquil-furanoides (Durnford y Shahidi, 1998).

1.1.5 Oxidación lipídica en productos marinos

La congelación y posterior almacenamiento congelado de algunas especies marinas, puede conducir a cambios indeseables en los tejidos que afectan sus propiedades nutritivas, sensoriales y funcionales (Brannan y Erickson, 1996). La oxidación lipídica es un problema que se asocia frecuentemente a los pescados grasos almacenados al estado congelado y deshidratado: la vida de anaquele de los pescados grasos congelados generalmente finaliza con la aparición de sabores y olores rancios. Esta susceptibilidad se debe al gran contenido de ácidos grasos poliinsaturados que contienen sus lípidos, particularmente a los ácidos grasos omega-3 (Ashton, 2002). La oxidación lipídica de productos marinos frescos y congelados, puede ser catalizada por iones metálicos (Khayat y Schwall, 1983).
1.1.5.1 Índice de peróxidos

La oxidación de ácidos grasos insaturados o de triglicéridos en productos del mar, involucra la formación de radicales libres e hidroperóxidos (Khayat y Schwall, 1983). Los productos primarios de la oxidación lipídica son hidroperóxidos formados por la reacción entre el oxígeno y los ácidos grasos insaturados. El índice de peróxidos (IP) mide la concentración de sustancias (en términos de miliequivalentes de peróxidos por 1000 gramos de muestra) que oxidan el yoduro de potasio a yodo (O’Brien, 2004).

1.1.5.2 Valor de p-anisidina

Los hidroperóxidos no tienen sabor ni olor, pero éstos se rompen rápidamente para formar compuestos secundarios, principalmente aldehídos, que presentan fuertes olores y sabores desagradables. El valor de p-anisidina mide la cantidad de aldehídos α y β insaturados presentes en el aceite: la p-anisidina reacciona con los compuestos aldehílicos, originando productos de coloración amarilla que se cuantifican espectrofotométricamente a 350 nanómetros (O’Brien, 2004).

1.1.6 Antioxidantes

La palabra antioxidante implica cualquier sustancia, de origen sintético o natural, que encontrándose en bajas concentraciones, respecto a la de los sustratos biológicos oxidables (como lípidos, proteínas, ADN e hidratos de carbono), es capaz de prevenir o retardar la oxidación radial de dichos sustratos (Valenzuela y Nieto, 1996; Jiménez y Speisky, 2000). La eficacia de un antioxidante se relaciona con muchos factores, entre ellos: energía de activación, constante de velocidad, potencial de óxido reducción, posibilidad de pérdidas o destrucción y solubilidad (Fennema, 1993).

Desde el punto de vista práctico, los antioxidantes tienen que poseer las siguientes propiedades: ser inocuos, muy activos a concentraciones bajas (0,01-0,02 %) y liposolubles, para acumularse en la fase lipídica de un alimento. Además, deberán ser estables durante todos los procesos ordinarios de la tecnología alimentaria (Belitz y Grosch, 1997). Los antioxidantes retrasan el desarrollo de compuestos tóxicos y de sabores indeseables en los alimentos, mantienen su calidad nutritiva y aumentan la vida útil de los mismos, prolongando el período de inducción de la materia grasa. Los antioxidantes pueden inhibir o retardar la oxidación de dos maneras: como limpiadores
de radicales libres que actúan durante el período de inducción (antioxidante primario), o por un mecanismo que no implica la eliminación directa de los radicales libres, en este caso se habla de antioxidantes secundarios; éstos funcionan por una variedad de mecanismos: complejando iones metálicos, como limpiadores de oxígeno, convirtiendo los hidroperóxidos a especies no radicalarias, absorbiendo radiación UV o desactivando al oxígeno singulete y expresan su actividad antioxidante cuando estos compuestos están presentes (Gordon, 2001).

1.1.6.1 Antioxidantes sintéticos

1.1.6.1.1 Etoxiquina

La etoxiquina, 6-etoxi-1,2-dihidro-2,2,4-trimetilquinolina es un antioxidante utilizado en la industria alimentaria, en especial en la fabricación de harina de pescado. Su empleo en Chile ha significado importaciones que sobrepasan los MM US$ 8/año con un coste superior a los US$ 5,7/kg (Castañeda et al., 1999).

La etoxiquina se utiliza como aditivo para proteger a los piensos de la autocombustión durante el transporte. Las determinaciones de resonancia electrónica de spin (ESR) muestran que la mayor parte de la etoxiquina existe en forma de radical libre, el cual se estabiliza por dimerización. El radical libre es la especie con actividad antioxidante (Belitz y Grosch, 1997).

1.1.6.1.2 Butil hidroxi-tolueno (BHT)

El butil hidroxi-tolueno (BHT) y el butil hidroxi-anisol (BHA) son poderosos antioxidantes sintéticos que se han utilizado por décadas en los alimentos, sin embargo, se han hecho estudios que demuestran su posible toxicidad (Ibáñez et al., 2000).

La acción antioxidante del BHT es similar a la de la vitamina E: dona eficientemente un átomo de hidrógeno a un radical peroxi o alcohoxi, interfiriendo con la propagación de la peroxidación lipídica (López, 1996).
1.1.6.2 Antioxidantes naturales

El creciente interés de la población por la ingesta de alimentos de origen natural ha provocado un aumento en la demanda por antioxidantes naturales, productos que son capaces de prevenir o retardar la oxidación de grasas y aceites (Ibáñez et al., 2003).

1.1.6.2.1 Tocoferoles

El término vitamina E agrupa a una serie de 8 compuestos: α-, β-, γ- y δ- tocoferol, y α-, β-, γ- y δ- toctrienol (Johnson, 2001). Los derivados metilados del tocol, el 2-metil 2 (4’,8’,12’-trimetil-tridecil)-croman-3-ol, se denominan tocoferoles. La actividad antioxidante de los tocoferoles aumenta en la serie \(\alpha \rightarrow \delta \), lo contrario ocurre con la actividad vitamínica y con la velocidad de reacción con radicales peróxido. La actividad del \(\gamma \)-tocoferol comparada con el \(\alpha \)-tocoferol es más alta y se debe a la mayor estabilidad del primero y a la aparición de productos distintos, durante la reacción de antioxidación (Belitz y Grosch, 1997).

![Estructura química de los tocoferoles.](image)

Figura Nº 1.2: Estructura química de los tocoferoles.

Los tocoferoles son antioxidantes naturales, de estructura fenólica que se agregan a la harina de pescado para retardar su deterioro, al igual que la etoxiquina, el BHT y el BHA (National Research Council, 1993). Han sido ampliamente usados como una alternativa natural a los antioxidantes sintéticos (Tang et al., 2001). La fortificación de los alimentos de acuicultura con vitamina E se aplica comúnmente para mejorar la estabilidad oxidativa, y por ende la vida útil de los pescados (Huo et al., 1996). Estudios han demostrado que la carne de animales que han sido alimentados con dietas suplementadas con \(\alpha \)-tocoferol es menos susceptible a la oxidación lipídica, debido a que este antioxidante se almacena en las membranas de las células animales (De Winne y Dirinck, 1997).
1.1.6.2.2 Compuestos fenólicos

Los compuestos fenólicos tales como los representantes de la serie de la flavonona y de los flavonoles, que se hallan ampliamente distribuidos en los tejidos vegetales, juegan un papel como antioxidantes naturales (Belitz y Grosch, 1997). Entre las diferentes especies de plantas estudiadas destaca la familia Labiada, a la cual pertenecen el romero (Rosmarinus officinalis) y la salvia (Salvia officinalis y Salvia fruticosa), en ellas se han identificado diversos compuestos fenólicos, que han demostrado poseer una gran actividad antioxidante (Pizzale et al., 2002). El extracto de romero es uno de los más utilizados y comercializados, en él se ha reportado la presencia de, al menos seis diterpenos fenólicos con actividad antioxidante: carnosol, ácido carnósico, rosmadial, rosmanol, epirosmanol y metil carnosato además, de ácidos fenólicos como el rosmarínico (Frankel et al., 1996; Ibáñez et al., 2000).

En sistemas lipídicos, los extractos de romero con elevados contenidos de diterpenos fenólicos han resultado ser más efectivos (Hopía et al., 1996), mientras que en sistemas acuosos, el ácido rosmarínico exhibe la mayor actividad antioxidante (Frankel et al., 1996).

![Estructura química del ácido carnósico y del ácido rosmarínico](image)

Figura Nº 1.3: Estructuras químicas del ácido carnósico (a) y del ácido rosmarínico (b).

Para inhibir la oxidación en alimentos que contengan lípidos de pescado y para prevenir la rancidez en músculo de pescados grasos, es recomendable el empleo de extractos naturales con propiedades antioxidantes, provenientes de frutas y hortalizas (Medina et al., 2003).
1.1.7 Parámetros de calidad del músculo

Los términos de calidad y frescura se emplean comúnmente, en muchas áreas de la tecnología de pescados: en la literatura, en las publicaciones científicas, en los artículos periodísticos, en revistas y en el comercio. Sin embargo, corresponden a conceptos difíciles de definir y medir, y que a menudo se utilizan en más de un contexto (Bremner, 2002). La frescura del pescado es un factor importante para determinar si su carne es comestible o no, también para considerar la posibilidad de emplearlo en otras aplicaciones. Tradicionalmente, se han utilizado varios parámetros para determinar la frescura en pescado entero recién capturado, los que incluyen la inspección visual del color externo, del brillo y del color de las escamas y agallas; también se huele y se evalúa la textura de la piel y carne (Fraser y Sumar, 1998a).

Los métodos usados para determinar frescura en el músculo de pescados son de tipo químico y microbiológico. La determinación del deterioro por medios químicos se basa en los productos resultantes de la ruptura de micro y macrocomponentes presentes en dicho músculo (Fraser y Sumar, 1998a). En la industria pesquera, existe un gran interés en desarrollar métodos rápidos para evaluar la frescura del pescado mediante el uso de indicadores, que permitan mostrar el estado de calidad general del mismo (Byrne et al., 2002). Para evaluar la frescura en salmón, se emplea el corte noruego de calidad (NQC), el que se encuentra normalizado y se define como aquel que va desde el fin de la aleta dorsal hasta el ano (Mariojouls, 2000; Delord, 2005).

1.1.7.1 Composición proximal

El conocimiento del aporte nutricional de las especies marinas es fundamental cuando se inicia la exportación de productos pesqueros a otros países, ya que se requiere para ser incorporada en el etiquetado, como lo exigen las reglamentaciones extranjeras (Romero et al., 1996).

Es difícil generalizar y establecer valores medios para el contenido de los nutrientes del pescado, ya que éstos dependen de la especie y, dentro de ella, a veces del sexo, del ciclo biológico o incluso de la parte del animal analizada. Generalmente, el contenido lipídico se incrementa a medida que el contenido de agua disminuye y la proteína permanece prácticamente estable (Navarro, 1991a; Aubourg, 2004).
1.1.7.2 Nitrógeno básico volátil total (NBVT)

Los altos niveles de humedad, la presencia de aminoácidos libres, de otros compuestos nitrogenados y de proteína digestible hacen que los productos del mar sean alimentos fácilmente perecederos (Fraser y Sumar, 1998b).

El nitrógeno básico volátil total (NBVT), también llamado bases volátiles totales (BVT) contiene dimetilamina (DMA), trimetilamina (TMA), amoníaco (NH₃) y trazas de monometilamina y propilamina, que se formarían en etapas avanzadas de la descomposición de pescados. Los compuestos del NBVT se originan del óxido de trimetilamina (OTMA) y de aminoácidos libres por mecanismos diferentes, por lo tanto, este índice representa el efecto convergente de varias transformaciones. Esta falta de especificidad es justamente uno de sus méritos, pues el NH₃ y las aminas volátiles son metabolitos ubíquos de la descomposición de pescados (Contreras, 2002).

La determinación del contenido de NBVT es uno de los métodos químicos más utilizados para evaluar la calidad de los pescados. Los niveles de NBVT son comúnmente estudiados en muchas especies durante su almacenamiento controlado en frío (Ruiz-Capillas y Horner, 1999).

1.1.7.3 Dimetilamina (DMA) y Formaldehído (HCHO)

La degradación del OTMA en especies gádidas de pescados genera DMA y formaldehído (HCHO) en cantidades equimolares (Erickson, 2000; Contreras 2002). Esta reacción se ve favorecida durante el almacenamiento congelado de dichas especies y sus efectos no disminuyen mediante el tratamiento de los pescados, con productos químicos ni con atmósferas modificadas (Erickson, 2000).

La acumulación de DMA, una amina secundaria, puede ocurrir en la naturaleza durante la degradación de la trimetilamina (TMA), una amina terciaria simple encontrada en algunas plantas superiores, hongos y algunos pescados (Tate y Alexander, 1976). El contenido de DMA en un pescado es función del tiempo de almacenaje en hielo desde la captura, y no necesariamente del estado sanitario del mismo (Contreras, 2002).
La presencia de DMA en un pescado congelado puede ser un indicio de la reducción enzimática del OTMA, llevada a cabo por la enzima OTMA demetilasa u OTMAasa (Sotelo et al., 1995), aunque también es posible que se forme DMA en pescados congelados por vías no enzimáticas, que si bien no están completamente definidas, también involucrarían la degradación del OTMA en presencia de catabolitos de cisteína, EDTA y Fe^{2+} (Spinelli y Koury, 1979; Spinelli y Koury, 1981).

El HCHO es un agente extremadamente reactivo que ha sido señalado como un agente de deterioro textural de pescados, moluscos y crustáceos congelados, por su habilidad para formar enlaces cruzados con las proteínas miofibrilares, haciéndolas menos funcionales (Contreras, 2002). Ayuda al endurecimiento del pescado y a la pérdida en la capacidad de retención de agua, lo que da como resultado pescados con textura "algodonosa" y "esponjosa" (Erickson, 2000). Aunque el HCHO no es un compuesto nitrogenado, se incluye dentro de este grupo por ser un producto de la degradación del OTMA (Huidobro y Tejada, 1990).

1.1.7.4 Valor pH

Posterior al sacrificio, la generación de ácido láctico dentro del músculo del pescado produce un descenso en el pH. La magnitud de éste, dependerá de la cantidad de reservas de energía presentes en el tejido del pescado antes de la muerte, las cuales a su vez dependen del estado nutricional de los pescados antes de la captura y de la cantidad de energía que utilizan durante el sacrificio. Si los pescados tienen reservas de energía más altas cuando se sacrifican, el pH al final del rigor mortis tenderá a ser más bajo, lo que puede influenciar directamente en su sabor, textura y estabilidad durante el almacenamiento congelado (Hedges, 2002).
1.1.8 Análisis de dietas para salmónidos

Los salmónidos son carnívoros, cuando viven en forma libre se alimentan principalmente de peces y crustáceos, habiendo adaptado su metabolismo a la alta ingesta de proteínas y lípidos, ya que su capacidad para metabolizar carbohidratos es limitada. Los salmónidos de cultivo incorporan una gran cantidad de pescado en sus dietas, en forma de harina y aceite, y en algunos casos se incorpora también pescados frescos, congelados y/o ensilado de pescado (Pike et al., 1990).

La alimentación del salmón en cultivo, tiene una marcada influencia en la calidad final del producto, así, atributos como el color de su carne y el contenido graso están determinados por el tipo de dieta que se utilice (SalmonChile, 1992). El proceso de alimentación de salmónidos es altamente tecnificado y científicamente elaborado. Las materias primas más importantes de la dieta artificial de los salmones son la harina y el aceite de pescado. Ambos productos se obtienen a partir de la captura industrializada de peces oceánicos como el jurel, la sardina, la anchoveta, entre otras. La harina le aporta al salmón los macro y micronutrientes esenciales y el aceite, además de constituir un aporte energético importante, le permite incorporar los ácidos grasos poliinsaturados de cadena larga (AGPICL) omega-3 fundamentales para su crecimiento y desarrollo (Valenzuela et al., 2000; Valenzuela, 2005).

La harina de pescado preparada con ejemplares enteros es una de las mejores fuentes de proteína de alta calidad disponibles. Es también, una fuente rica de energía, de ácidos grasos esenciales, de minerales y es altamente digestible y apetitosa para la mayoría de las especies. La harina elaborada de partes de pescados, tales como desechos de las plantas conserveras y de proceso, tiene un porcentaje menor de proteína de alta calidad que el de la elaborada con pescados enteros. También posee contenidos elevados de cenizas, por lo que debe ser utilizada prudentemente, pues puede producir desequilibrios minerales (National Research Council, 1993).

Actualmente, la disponibilidad y el coste de las harinas y aceites de pescado han provocado la necesidad de sustituirlos en parte de las dietas para salmones por insumos vegetales, lo que ha originado una estrecho vínculo entre las industrias salmoneras y agrícolas del país (Águila, 2006).
2. HIPÓTESIS DE TRABAJO

El reemplazo de antioxidantes sintéticos por naturales en la dieta de engorda de salmón coho de exportación mantiene los parámetros de peroxidación lipídica y de calidad en salmones HG durante su almacenamiento prolongado al estado congelado (-18°C).

2.1 Objetivo general

Comparar el efecto del reemplazo de antioxidantes sintéticos por naturales (en la dieta de engorda del Salmón coho (Oncorhynchus kisutch)) sobre la rancidez oxidativa y calidad de su carne durante la conservación en estado congelado a -18°C por un año. Este reemplazo se lleva a cabo debido a las regulaciones legales de mercados externos (Japón, UE, USA), unido al interés actual del consumidor en adquirir alimentos más naturales.

2.2 Objetivos específicos

a) Determinar la composición proximal, cuantificación de tocoferoles (α, β, γ y δ) y la estabilidad oxidativa en las dietas de engorda, al inicio del estudio.
b) Determinar la composición proximal del Salmón coho alimentado a tiempo cero y después de un año de almacenamiento congelado.
c) Extraer y cuantificar el aceite del corte noruego de calidad (NQC) de Salmón coho, cada tres meses, durante un año de almacenamiento congelado.
d) Determinar la composición de ácidos grasos poliinsaturados de cadena larga ω3 (EPA y DHA) en el aceite extraído y evaluar la variación del índice de polienes cada tres meses, durante un año de almacenamiento congelado.
e) Evaluar cada tres meses el estado de rancidez primaria y secundaria en el aceite extraído, por medio del índice de peróxidos y del valor de p-anisidina respectivamente, durante el año de almacenamiento congelado.
f) Obtener parámetros que permitan evaluar la frescura en el NQC de Salmón coho cada tres meses, a través del año de almacenamiento congelado: NBVT, DMA, HCHO, y valor pH.
g) Determinar la variación en el contenido de tocoferoles (α, β, γ y δ) en el aceite extraído cada tres meses, durante el año de almacenamiento congelado.
h) Evaluar la existencia de diferencias estadísticamente significativas para cada parámetro analizado, en relación a individuo, dieta y tiempo de almacenamiento.
3. MATERIALES Y METODOLOGÍA

3.1 Materiales y equipos

Para llevar a cabo esta experiencia se emplearon materiales, insumos y equipos usuales de un laboratorio de análisis de alimentos. Todos los reactivos químicos empleados fueron grado p.a. o grado HPLC cuando correspondía. Además, se contaba con los estándares necesarios.

3.2 Metodología

3.2.1 Diseño experimental

Se consideró la utilización de 3 jaulas con salmones en cultivo con un peso inicial aproximado de 1500 g, los cuales fueron alimentados de la siguiente manera: una jaula con la dieta I (control, con antioxidantes sintéticos etoxiquina y BHT), una segunda jaula con la dieta II (con exceso de tocoferoles libres como antioxidante) y una tercera jaula con la dieta III (con tocoferoles libres y extracto de romero como antioxidante), tal como lo detalla la figura 3.1. Además, a todas las dietas se les agregó acetato de α-tocoferol para satisfacer las necesidades vitamínicas de los peces.

La planta que elaboró las dietas está ubicada en Talcahuano y las envió a la planta de cultivo de salmónidos que posee la misma empresa en Calbuco. Con las dietas en estudio (I, II y III) se alimentaron los salmones durante 80 días, hasta que alcanzaron un peso final alrededor de 2.500 g.

El estudio de la evolución de la calidad del Salmón coho entero, almacenado congelado a -18°C se realizó cosechando 30 salmones de cada jaula (90 salmones en total), los que se sacrificaron y llevaron a una planta procesadora de salmones (Fitz Roy) que posee la misma empresa en Colaco. Estos salmones se pesaron, se les eliminó la cabeza, se evisceraron, se lavaron y se desagallaron; luego se emparrillaron y congelaron a -40°C en un túnel que funciona por sistema batch, para alcanzar una temperatura igual o inferior a -18°C en el centro térmico del pescado en un máximo de 8 horas; luego se pesaron, se glasearon, se colocaron en bolsas de polipropileno y se empaataron en cajas de poliestireno expandido; para finalmente ser trasladados a Santiago en contenedores térmicos, cuya temperatura interna es igual o inferior a -18°C.
En el laboratorio se analizaron inmediatamente 5 individuos de cada tratamiento, los salmones restantes se mantuvieron durante un año a -18ºC, simulando las condiciones comerciales habituales de mantención en cámara de congelación. Durante el periodo de almacenamiento se muestrearon 5 puntos (cada 3 meses a partir de diciembre de 2004), en los que se analizaron 5 individuos de cada dieta elegidos al azar, los cuales fueron descongelados previamente para proceder a su estudio. Los extractos y aceites obtenidos del músculo de los salmones fueron almacenados a -30ºC hasta la realización de los análisis correspondientes.

Figura Nº 3.1: Diagrama que muestra el diseño experimental.
3.2.2 Métodos

La determinación de los parámetros químicos se efectuó de la manera siguiente:

3.2.2.1 Composición centesimal (en dietas y en músculo)

3.2.2.1.1 Humedad

3.2.2.1.2 Materia grasa

De acuerdo al método de Bligh y Dyer (1959) basado en una extracción del aceite en frío con cloroformo y metanol, seguido de una aspiración de la fracción acuosa y evaporación del cloroformo, para luego determinar gravimétricamente el residuo correspondiente al aceite.

3.2.2.1.3 Proteínas

Según el método de Kjeldahl con catalizador de cobre AOAC 984.13 (1995) en el alimento para salmónidos y AOAC 928.08 alternativa II (1995) en músculo, ambos miden el nitrógeno total por destrucción de la materia orgánica con ácido sulfúrico concentrado, utilizando un factor de conversión de nitrógeno a proteína igual a 6,25.

3.2.2.1.4 Cenizas

3.2.2.1.5 Extracto no nitrogenado (ENN)

Por diferencia.

* Se determinó en el músculo del Salmón coho sólo al inicio y al final del estudio.
3.2.2.2 Ácidos grasos poliinsaturados EPA y DHA, e índice de polienos en aceite de salmones (en aceite de músculo)

Según una modificación del método propuesto en UNE 55-037-73 (IRANOR, 1973), aplicable a cualquier mezcla de ácidos grasos después de conversión a esteres metílicos, mediante cromatografía de gas líquido. El índice de polienos se determinó de acuerdo a Lubis y Buckle (1990), como otra medida de la rancidez en lípidos marinos.

3.2.2.3 Rancidez (en aceite de músculo).

3.2.2.3.1 Índice de peróxidos

De acuerdo al método yodométrico AOCS Cd 8-53 (1993), que evalúa la presencia de productos de oxidación primaria de aceites. El índice se determina mediante la valoración del yodo formado, con tiosulfato sódico.

3.2.2.3.2 Valor de p-anisidina

Según método oficial AOCS Cd 18-90 (1993), que da cuenta de la presencia de aldehídos (principalmente 2-alquenales y 2,4-dienales) en el aceite, los cuales se consideran como productos secundarios de la oxidación de los mismos. El valor se determina espectrofotométricamente a una longitud de onda de 350 nm.

3.2.2.4 Compuestos nitrogenados volátiles (en músculo)

3.2.2.4.1 Nitrógeno básico volátil total (NBVT)

Según método de precipitación tricloroacética propuesto por Gallardo et al. (1979) y modificado por Contreras (1999), basado en la precipitación de las proteínas del músculo de salmón con ácido tricloroacético (TCA), luego se separan las bases volátiles de los otros compuestos nitrogenados de la muestra, mediante destilación con vapor a pH alcalino, utilizando óxido de magnesio como agente alcalinizante. Luego las bases volátiles se cuantifican y los resultados se expresan en mg-N/100 g de muestra.

3.2.2.4.2 Dimetilamina (DMA)

Técnica descrita por Dyer (1945), modificada por Contreras (2002). Consiste en determinar la concentración de DMA a través de la diferencia entre las absorbancias de dos sistemas (Sistema 1 extracción de TMA y DMA y Sistema 2 extracción de TMA), medidas a una longitud de onda de 410 nm.
3.2.2.4.3 Formaldehído (HCHO)

Por medio del método AHMT propuesto por Yamagata y Low (1995), se basa en la extracción del formaldehído (HCHO) con ZnSO₄ y posterior reacción del HCHO y el 4-amino-3-hidrazino-5-mercapto-1,2,4 triazol (AHMT), que forman un derivado de tetrazol color violeta.

La concentración de formaldehído se determina espectrofotométricamente, midiendo la absorbancia a una longitud de onda de 550 nm.

3.2.2.5 Valor pH (en músculo)

Se midió en una suspensión acuosa de músculo, de acuerdo al método potenciométrico de Scott et al. (1988), modificado por Suvanich et al. (2000).

3.2.2.6 Tocoferoles (en dietas y en aceite de músculo)

Siguiendo el método oficial AOCS Ce 8-89 (1993), que consiste en determinar la concentración de tocoferoles α,β,γ y δ presentes en el aceite, mediante cromatografía líquida de alta resolución (HPLC) en fase normal, el resultado se expresa en mg/kg de aceite.

3.2.2.7 Estabilidad termooxidativa (en dietas)

Según método OSI descrito por la norma AOCS Cd 12b-92 (1993) empleándose el equipo Rancimat, que mide el tiempo de resistencia a la termooxidación de la materia grasa al calentarla en condiciones de temperatura y flujo de aire constante.

3.2.3 Análisis estadísticos

Primeramente, se realizó un tratamiento estadístico de todos los datos obtenidos para estudiar la posible existencia de diferencias significativas entre los individuos analizados, mediante análisis de variancia (ANDEVA) unifactorial en el caso que las observaciones se ajustaran a una distribución normal, en caso contrario, se efectuó una prueba no paramétrica (Kruskal Wallis). Luego, con los valores promedio, se efectuó un ANDEVA de dos vías para determinar si existen diferencias significativas entre las distintas dietas y entre los tiempos de muestreo. En el caso de existir dichas diferencias (P≤0,05) se realizó una comparación de rango múltiple, utilizando la prueba de diferencias honestamente significativas (HSD) de Tukey. Para dichos análisis se empleó el programa computacional Statgraphics Plus® 5.1, a un 95% de confianza.
4. RESULTADOS Y DISCUSIONES

Se efectuaron análisis estadísticos (ANDEVA) por cada tratamiento para determinar la posible existencia de diferencias significativas, entre los distintos individuos analizados y como su resultado arrojó la ausencia de dichas diferencias, se trabajó con los valores promedio de los individuos analizados para cada muestreo (n=5). Para el caso de la composición proximal, se realizó un homogeneizado de los 5 individuos, y se trabajó por duplicado (n=2). El detalle de todos los análisis estadísticos se encuentra en el anexo Nº6.

4.1 Análisis y composición proximal de las dietas de engorda

Tabla Nº 4.1: Composición proximal, contenido de tocoferoles y estabilidad oxidativa de las dietas de engorda suministradas a salmón coho:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad (%)</td>
<td>5,78 ± 0,05(^a)</td>
<td>7,88 ± 0,04(^o)</td>
<td>6,11 ± 0,01(^e)</td>
</tr>
<tr>
<td>Proteínas (% N·6,25)</td>
<td>43,06 ± 0,63(^a)</td>
<td>43,63 ± 0,03(^e)</td>
<td>44,62 ± 0,63(^e)</td>
</tr>
<tr>
<td>Lípidos (%)</td>
<td>28,60 ± 0,07(^a)</td>
<td>30,68 ± 0,05(^b)</td>
<td>30,46 ± 0,05(^b)</td>
</tr>
<tr>
<td>Cenizas (%)</td>
<td>6,03 ± 0,02(^a)</td>
<td>6,43 ± 0,07(^o)</td>
<td>6,39 ± 0,05(^o)</td>
</tr>
<tr>
<td>ENN (%)</td>
<td>16,53 ± 0,50(^a)</td>
<td>11,38 ± 0,11(^b)</td>
<td>12,42 ± 0,63(^b)</td>
</tr>
<tr>
<td>(\alpha)-tocoferol (mg/kg)</td>
<td>7,18 ± 1,85(^a)</td>
<td>12,86 ± 1,12(^e)</td>
<td>13,64 ± 8,04(^e)</td>
</tr>
<tr>
<td>(\beta)-tocoferol (mg/kg)</td>
<td>0,00 ± 0,00(^a)</td>
<td>6,94 ± 2,83(^o)</td>
<td>0,00 ± 0,00(^a)</td>
</tr>
<tr>
<td>(\gamma)-tocoferol (mg/kg)</td>
<td>5,28 ± 0,32(^a)</td>
<td>24,68 ± 5,47(^e)</td>
<td>8,90 ± 1,39(^e)</td>
</tr>
<tr>
<td>(\delta)-tocoferol (mg/kg)</td>
<td>38,00 ± 0,90(^a)</td>
<td>47,87 ± 7,32(^e)</td>
<td>9,86 ± 2,97(^e)</td>
</tr>
<tr>
<td>Tocoferoles totales (mg/kg)</td>
<td>50,46± 2,43(^a)</td>
<td>92,35± 16,75(^b)</td>
<td>32,40± 3,68(^b)</td>
</tr>
<tr>
<td>Tiempo de inducción (h)</td>
<td><0,5(^a)</td>
<td><0,5(^o)</td>
<td><0,5(^a)</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=2) a, b, c indican diferencias significativas entre dietas para un mismo parámetro (P≤ 0,05).

El contenido de proteínas de las tres dietas se encuentra dentro del rango entre 40 a 45% estipulado por National Research Council (1993) en dietas comerciales para Salmón del Atlántico; mientras que el contenido lipídico de todas ellas es superior a los 200 g/kg (o al 20% de lípidos), por lo que se consideran dietas elevadas en lípidos, tal como las empleadas en el estudio de Scaife et al. (2000) para alimentar Salmón del Atlántico (Salmo salar) con distintos niveles de acetato de \(\alpha\)-tocoferol, con un tenor graso de 289,5 g de aceite/kg de dieta (o 28,95% de aceite). Según lo establecido por Salazar (1994) en dietas para crecimiento y reproducción de salmónidos, el contenido máximo de humedad es del 9% y el de cenizas de un 11%, indicando que las 3 dietas...
analizadas se ajustan a dichos límites. Es importante mencionar que la determinación de la composición centesimal y de los antioxidantes de las dietas de engorda también se efectuó en un laboratorio externo, quienes encontraron valores similares a los obtenidos por nosotros en la mayoría de los análisis: humedad entre 5,1 y 6%, materia grasa entre 29 y 30,8%, cenizas entre 6,1 y 6,4%, proteína cruda entre 41 y 43,8%. Además determinaron etoxiquina y BHT, encontrando para la primera concentraciones de 22 mg/kg en la dieta control (I), en la dieta II un valor de 3,7 mg/kg y en la dieta III un valor de 5 mg/kg. Para el BHT se encontraron concentraciones < a 30 mg/kg para todos los casos. Los resultados que más difieren de los nuestros son: contenido de tocoferoles totales en dieta I (22,4 mg/kg) y en dieta III (45 mg/kg).

Se observa que la concentración de tocoferoles es mayor en el aceite correspondiente a la dieta II, lo cual está de acuerdo con lo diseñado en el estudio y es parecido a lo determinado en el laboratorio externo (101 mg/kg). Sin embargo, el contenido de tocoferoles totales en dicha dieta es menor a las utilizadas por Scaife et al. (2000), que van en un rango entre los 167 a 786 mg/kg de α-tocoferol. Se determinó que la estabilidad oxidativa para las tres dietas de engorda fue la misma, independiente del tipo de antioxidante adicionado a ellas; Flores (2004) determinó el tiempo de inducción de aceite de salmón comercial adicionado de extracto de romero comercial en concentraciones que fluctúan entre 0,1 y 0,5% y encontró los mismos valores que se obtuvieron para los aceites extractados de las dietas. Liston et al. (1968) explican que la curva de inducción para la oxidación de la mayoría de los aceites de pescado crudos resulta considerablemente aplanada, sin el pronunciado descenso que se aprecia al final del período de inducción, aún con el empleo de antioxidantes, ya que la adición de éstos después de terminado este período tiende a ser ineficaz en retardar el desarrollo de la rancidez (Gordon, 2001). Esto ayuda a la suposición que los aceites extraídos de las dietas estaban ya oxidados al momento que llegaron al laboratorio; el valor del tiempo de inducción no toma en cuenta la historia de los productos, al igual que los índices de peróxidos y/o de p-anisidina: un bajo tiempo de inducción y/o un alto valor de peróxidos y/o de p-anisidina, puede deberse tanto al uso de materia prima añeja en la elaboración de los pellets, como a un inadecuado almacenaje de los mismos (Galleguillos, 1994).
4.2 Composición proximal del músculo de salmón al inicio y al final del estudio

Tabla Nº 4.2: Composición proximal del músculo de salmones alimentados con las 3 dietas, al inicio y final del estudio:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mes 0</td>
<td>Mes 12</td>
<td>Mes 0</td>
</tr>
<tr>
<td>Humedad (%)</td>
<td>69,44 ± 0,29x</td>
<td>58,22 ± 0,04y</td>
<td>65,81 ± 0,39y</td>
</tr>
<tr>
<td>Proteínas (% N·6,25)</td>
<td>19,01 ± 0,40x</td>
<td>24,76 ± 0,28y</td>
<td>19,14 ± 0,35y</td>
</tr>
<tr>
<td>Lípidos (%)</td>
<td>10,10 ± 1,86x</td>
<td>14,44 ± 0,81y</td>
<td>12,12 ± 1,70y</td>
</tr>
<tr>
<td>Cenizas (%)</td>
<td>1,27 ± 0,00x</td>
<td>1,29 ± 0,02y</td>
<td>1,28 ± 0,05y</td>
</tr>
<tr>
<td>ENN (%)</td>
<td>0,19 ± 0,10x</td>
<td>1,28 ± 0,26y</td>
<td>1,65 ± 0,001x</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=2)

x,y indican diferencias significativas entre tiempos de almacenamiento para un mismo parámetro (P ≤ 0,05)

Para los contenidos de humedad, lípidos y proteínas se observaron diferencias significativas entre el inicio y el final del estudio (P ≤ 0,05), lo que no está de acuerdo con la hipótesis que plantea Aubourg (2004), que menciona que las variaciones en el contenido lipídico de pescados no debieran acompañarse de fluctuaciones en el contenido proteico. Montero et al. (2003) determinaron la composición proximal a Salmón del Atlántico de cultivo (Salmo salar) que sería empleado como materia prima para la elaboración de salmón ahumado en frío, después de un mes de almacenamiento congelado a -30ºC, encontrando los siguientes resultados: 21% de proteína, 1,1% de cenizas, 69,8% de humedad y 8,3% de grasa; valores muy cercanos a los obtenidos al inicio de este estudio en Salmón coho, con excepción del contenido lipídico, que fue bastante menor para Salmón del Atlántico; esto último se explica con el hecho de que la dieta de engorda suministrada era rica en lípidos. No obstante, Mörköre et al. (2001) estimaron contenido graso en Salmón Atlántico de cultivo (Salmo salar) que sería empleado como materia prima para la elaboración de salmón ahumado, a través de un método no destructivo de tomografía de rayos-X después de un mes de almacenamiento congelado a -20ºC, y encontraron valores que fluctuaron entre 16,7 y 21,8% de grasa.
4.3 Humedad de los salmones

Tabla Nº 4.3: Porcentaje de humedad de músculo de salmón coho alimentado con las 3 dietas, a través del tiempo:

<table>
<thead>
<tr>
<th>Tiempo (Mes)</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>69,44 ± 0,29x</td>
<td>65,81 ± 0,39x</td>
<td>67,31 ± 0,86x</td>
</tr>
<tr>
<td>3</td>
<td>64,77 ± 0,47x</td>
<td>68,01 ± 0,06x</td>
<td>68,77 ± 1,70x</td>
</tr>
<tr>
<td>6</td>
<td>66,80 ± 0,34x</td>
<td>66,79 ± 0,33x</td>
<td>69,52 ± 0,26x</td>
</tr>
<tr>
<td>9</td>
<td>68,80 ± 0,11x</td>
<td>69,66 ± 0,26x</td>
<td>69,57 ± 0,56x</td>
</tr>
<tr>
<td>12</td>
<td>58,22 ± 0,04y</td>
<td>57,51 ± 0,84y</td>
<td>58,00 ± 0,53y</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=2).
x, y indican diferencias significativas entre tiempos de almacenamiento (P < 0,05).

Para el porcentaje de humedad en músculo de Salmón coho no existieron diferencias significativas respecto a la dieta suministrada (P > 0,05). Los valores de humedad encontrados al inicio del estudio en músculo de Salmón coho alimentados con las 3 dietas son similares a los encontrados por Aubourg et al. (2005b) para la misma especie (entre 68 y 72% al inicio de su estudio), sin embargo son menores al valor de 76,3% reportado por Sathivel (2005) para Salmón rosa (Oncorhynchus gorbuscha) después de 3 meses de almacenamiento congelado. Para los salmones de nuestro estudio, se produce una disminución significativa de la humedad porcentual entre los meses 9 y 12 de almacenamiento, con lo que se comprueba la existencia de deshidratación del músculo de este pescado durante la congelación. Según Espinosa (1999), la humedad de los salmónidos sufre fluctuaciones en su contenido, lo cual se cumple para todos los salmones de este estudio.

4.4 Fracción lipídica de los salmones

Tabla Nº 4.4: Porcentaje de lípidos en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo:

<table>
<thead>
<tr>
<th>Tiempo (Mes)</th>
<th>Dieta I (Control)A</th>
<th>Dieta II (Exceso de tocoferoles)B</th>
<th>Dieta III (Tocoferoles y extracto de romero)B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10,10 ± 0,44x</td>
<td>12,12 ± 1,70x</td>
<td>10,74 ± 1,52x</td>
</tr>
<tr>
<td>3</td>
<td>9,09 ± 1,95x</td>
<td>12,94 ± 3,18x</td>
<td>11,73 ± 1,75x</td>
</tr>
<tr>
<td>6</td>
<td>9,47 ± 2,05x</td>
<td>11,59 ± 2,64x</td>
<td>11,13 ± 1,66x</td>
</tr>
<tr>
<td>9</td>
<td>9,68 ± 0,44x</td>
<td>11,68 ± 0,87x</td>
<td>14,65 ± 1,96x</td>
</tr>
<tr>
<td>12</td>
<td>14,44 ± 0,81y</td>
<td>15,98 ± 2,55y</td>
<td>17,18 ± 2,56y</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5).
A, B, C indican diferencias significativas entre dietas (P < 0,05).
x, y indican diferencias significativas entre tiempos de almacenamiento (P < 0,05).
Los valores obtenidos para el contenido lipídico del músculo de Salmón coho alimentados con las 3 dietas fueron superiores a los reportados en otros estudios utilizando la misma especie, Aubourg et al. (2005b) informan un contenido de materia grasa entre 4 y 6% al inicio de su estudio, mientras que Cruz (2002) entrega valores de contenido lipídico para Salmón coho alimentado con distintos niveles de lípidos entre 6,6 y 7,2% al tercer mes de almacenamiento congelado y un rango entre 8,4 y 9,7% al séptimo mes de conservación en dicho estado. Sin embargo, el contenido promedio de grasa de los salmones alimentados con las 3 dietas en estudio (Tabla Nº4.4) es menor al rango informado por Valenzuela (2005) para el salmón que produce la acuicultura chilena (14-19% de grasa) durante los primeros 9 meses de almacenamiento congelado. A partir de dicho mes, se produce un aumento significativo del contenido lipídico de todos los salmones de nuestro estudio, así se comprueba la variación inversa que existe entre el contenido graso y el de humedad en el músculo de este pescado durante la congelación.

4.5 Ácidos grasos poliinsaturados EPA y DHA, e índice de polienos en aceite de salmones

Tabla Nº 4.5: Porcentaje de EPA (20:5 ω3) en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo:

<table>
<thead>
<tr>
<th>Tiempo (Mes)</th>
<th>Dieta I (Control)A</th>
<th>Dieta II (Exceso de tocoferoles)B</th>
<th>Dieta III (Tocoferoles y extracto de romero)B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11,31 ± 3,35 x</td>
<td>6,20 ± 0,57 x</td>
<td>5,63 ± 0,43 x</td>
</tr>
<tr>
<td>3</td>
<td>9,27 ± 0,35 x,y</td>
<td>5,77 ± 0,27 x,y</td>
<td>5,84 ± 0,32 x,y</td>
</tr>
<tr>
<td>6</td>
<td>8,26 ± 1,02 x,y</td>
<td>4,77 ± 0,65 x,y</td>
<td>4,48 ± 0,19 x,y</td>
</tr>
<tr>
<td>9</td>
<td>8,62 ± 0,50 x,y</td>
<td>5,09 ± 0,86 x,y</td>
<td>4,29 ± 0,31 x,y</td>
</tr>
<tr>
<td>12</td>
<td>10,37 ± 1,09 x</td>
<td>7,46 ± 0,61 x</td>
<td>7,31 ± 0,51 x</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)
A,B indican diferencias significativas entre dietas (P ≤ 0,05) para un mismo parámetro
x,y indican diferencias significativas entre tiempos de almacenamiento (P ≤ 0,05) para un mismo parámetro.

EPA: Eicosapentáenoico (Ácido graso poliinsaturado de cadena larga).
DHA: Docosahexaenoico (Ácido graso poliinsaturado de cadena larga).
Tabla Nº 4.6: Porcentaje de DHA (22:6 ω3) en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo:

<table>
<thead>
<tr>
<th>Tiempo (Mes)</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23,84 ± 8,06 w</td>
<td>22,45 ± 3,60 w</td>
<td>23,05 ± 1,75 w</td>
</tr>
<tr>
<td>3</td>
<td>19,87 ± 1,82 w,x</td>
<td>20,16 ± 1,15 w,x</td>
<td>22,22 ± 2,03 w,x</td>
</tr>
<tr>
<td>6</td>
<td>17,61 ± 1,88 y</td>
<td>15,27 ± 2,02 y</td>
<td>17,10 ± 1,18 y</td>
</tr>
<tr>
<td>9</td>
<td>18,15 ± 3,57 x,y</td>
<td>17,26 ± 3,21 x,y</td>
<td>16,49 ± 2,69 x,y</td>
</tr>
<tr>
<td>12</td>
<td>27,41 ± 6,93 z</td>
<td>31,02 ± 4,02 z</td>
<td>30,35 ± 3,76 z</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)
w,x,y,z indican diferencias significativas entre tiempos de almacenamiento (P≤ 0,05) para un mismo parámetro

Para la concentración de EPA en el aceite de salmón (expresada en base lipídica), se observan diferencias significativas, tanto entre dietas como entre el tiempo de almacenamiento congelado (P≤ 0,05); siendo mayor el contenido de este ácido graso en los salmones alimentados con la dieta tradicional. Para el contenido de DHA en aceite de Salmón coho (expresada en base lipídica), también se observan diferencias significativas entre el tiempo de almacenamiento congelado (P≤ 0,05), no así entre las dietas (P>0,05). Se puede apreciar un aumento muy significativo de este ácido graso en los lípidos provenientes de los salmones alimentados con las 3 dietas en estudio entre los meses 9 y 12 de conservación al estado congelado. Valenzuela (2005) determinó estos ácidos grasos en aceites provenientes de filetes de salmón fresco aportados por las principales industrias salmonícolas de Chile, y encontró un contenido promedio equivalente al 8,82% de EPA y al 12,94% de DHA: así, el contenido medio de EPA de ellos fue cercano a los valores promedio obtenidos para los aceites de Salmón coho alimentados con la dieta tradicional, mientras que el de DHA de dichos salmones fue menor en comparación a los 3 tipos de aceites extraídos y analizados en los salmones de nuestro estudio. Romero et al. (1996) encontraron concentraciones de 5,7% de EPA y 12,7% de DHA en aceites obtenidos de conservas de salmón al natural. Aubourg et al. (2005b) encontraron un valor promedio de 7,1% para el EPA y de 14,8% para DHA en la fracción lipídica de Salmón coho usado como materia prima para la refrigeración. Por lo tanto, el contenido de DHA de los salmones de nuestro estudio es siempre mayor en relación a los informados en otras experiencias.
En otro experimento realizado con Salmón del Atlántico (Salmo salar) silvestre y de cultivo en Canadá, Ackman y Takeuchi (1986) determinaron que los ácidos grasos poliinsaturados de cadena larga ω3 (AGPICL ω3) forman parte mayoritaria de los fosfolípidos de sus aceites, y no tanto de los triglicéridos contenidos en los mismos: así, encontraron que los triglicéridos contenían entre un 1,4 y 2,1% de EPA y entre un 4,1% y 6,2% de DHA; mientras que los fosfolípidos contenidos en el aceite de estos salmones presentaban un contenido entre 5,5 y 7,7% de EPA y entre un 21,8% y 36,2% de DHA.

![Diagrama](image)

Figura Nº 4.1: Variación del índice de polienos en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo de almacenamiento.

El índice de polienos en aceite de Salmón coho da cuenta de la variación de los AGPICL ω3 EPA y DHA, en relación a un ácido graso saturado (16:0, palmitico), cuya composición debiera ser estable a través del tiempo. Este índice presentó diferencias significativas (P<0,05) con el tipo de dieta suministrada (anexo Nº7, tabla Nº6), siendo más elevado en el aceite proveniente de los salmones alimentados con la dieta que contiene extracto comercial de romero en todos los meses muestreados.
Este índice también, presentó diferencias significativas ($P \leq 0,05$) durante el tiempo de almacenamiento estudiado (anexo Nº7, tabla Nº6), las que se manifestaron como un importante aumento entre los meses 9 y 12 de almacenamiento congelado en los salmones alimentados con las 3 dietas; este comportamiento es similar a lo informado por Devia y Echegoyen (2005) en conservas de Salmón Atlántico (al natural y con extracto acuoso de romero), ambas almacenadas durante 170 días a 40ºC; de estos aumentos puede deducirse un efecto inhibitorio de los antioxidantes empleados en las dietas sobre la alteración de los ácidos grasos poliinsaturados (Losada et al., 2006) contenidos en los lípidos de los salmones, dicho efecto sería más pronunciado en el caso del extracto de romero (dieta III de nuestro estudio). Aubourg et al. (2005b) no encontraron una variación significativa de este índice en aceite proveniente de salmones coho refrigerados a 2ºC durante 24 días, además postulan que no es un método exacto para determinar los cambios de calidad en dicho estudio.

Careche y Jiménez Colmenero (1988) postulan que no siempre ocurre la esperada disminución de este tipo de índices en el tiempo, debido a que la variación de las interacciones entre proteínas y lípidos puede inducir a cambios en los niveles de ácidos grasos, que no siempre son provocados por los procesos oxidativos. También es importante considerar que el efecto de la hidrólisis lipídica debiera ser mayor en los últimos meses de almacenamiento, favoreciendo la formación de ácidos grasos libres de cadena corta, que pueden ser solubilizados en parte por la fracción polar del músculo del salmón, modificando la composición de ácidos grasos en sus lípidos a favor de un aumento porcentual de sus ácidos grasos de cadena larga.

4.6 Parámetros de lipoperoxidación primaria y secundaria en aceite de salmón coho

Ambos parámetros de lipoperoxidación (Índice de peróxidos y valor de p-anisidina) presentaron diferencias significativas ($P \leq 0,05$) durante el tiempo de almacenamiento estudiado (anexo Nº7, tablas Nº7 y Nº8).
4.6.1 Índice de peróxidos en aceite de salmones

El índice de peróxidos aumentó drásticamente entre los meses 3 y 6, disminuyendo entre los meses 9 y 12 para todos los casos. Según lo informado por Flores (2004) el índice de peróxido inicial en el aceite de salmón comercial es de 5,5 mEq oxígeno/kg de aceite, valor que recién se alcanza después de los 3 meses de almacenamiento congelado en todos los aceites de salmón extraídos en nuestro estudio. Por lo tanto, los lípidos de todos los salmones estaban muy frescos en el momento en que se llevó a cabo la congelación de los mismos. Refsgaard *et al.* (1998) determinaron índice de peróxidos en aceite extraído de Salmón del Atlántico (*Salmo salar*) cultivado, congelado a -10°C y alimentado con una dieta tradicional, encontrando un valor promedio de 2,7 mEq O₂/kg de grasa a la 11ª semana de almacenamiento y un valor medio de 10,3 mEq O₂/kg de aceite a la 34ª semana de conservación; el primer valor es comparable y similar al obtenido en el tercer mes de este estudio para todos los aceites de Salmón coho, mientras que el segundo valor se acerca al determinado en aceite de Salmón coho congelado a -18°C por 9 meses y alimentado con las dietas I y III. Aubourg *et al.* (2005a) determinaron índice de peróxidos en aceite de jurel (*Scomber scombrus*) entero capturado en dos épocas distintas y almacenado...
congelado a -20°C durante 12 meses, encontrando el valor máximo en el séptimo mes de congelación, lo mismo puede interpolarse para nuestro estudio, sin embargo, dicho máximo no superó los 5 mEq O₂/kg de grasa en el caso del jurel, en cambio en el caso de los salmones alimentados con la dieta II, el índice de peróxidos llegó a valores cercanos a los 14 mEq O₂/kg de aceite durante el sexto mes de almacenamiento, esto se explica debido a que el Salmón coho es rico en ácidos grasos poliinsaturados, en especial en DHA, compuesto que presenta seis dobles enlaces, los que lo hacen muy susceptible a la peroxidación en las primeras etapas de la rancidez oxidativa (Khayat y Schwall, 1983). Nieto et al. (1993) evaluaron la capacidad antioxidante de 6 flavonoides comerciales y 5 flavonoides nativos en aceite de sardina parcialmente refinado, sometiéndolos a oxidación acelerada a 60°C por 48 horas y encontraron que sólo un flavonoide comercial (quercetina) y uno nativo (5,3',4'-trihidroxi-7-metoxi flavonona) poseían un poder antioxidante superior (evaluado como la evolución en el índice de peróxidos) al α-tocoferol en dicha base grasa. Karahadian y Lindsay (1989) adicionaron α-tocoferol (670 mg/kg) a aceite de sábalo americano para luego oxidarlo aceleradamente bajo corriente de aire a 65°C por 3 días y encontraron que el α-tocoferol actuó de forma prooxidante en vez de antioxidante, puesto que el índice de peróxidos medido al primer y al tercer día de efectuada la oxidación fue significativamente mayor que otro aceite de la misma especie que no contenía antioxidantes; ésto puede explicar los valores más elevados para el índice de peróxidos encontrados en nuestro estudio para los aceites de salmón alimentados con la dieta II, sin embargo, no llegan a ser significativamente mayores (P>0,05) en comparación con las otras 2 dietas en estudio (anexo Nº7, tabla Nº7).

Gormaz (2005) demostró que antioxidantes naturales como los contenidos en extractos de romero (Rosmarinus officinalis) y matico (Buddleja globosa) provocaron una inhibición de la peroxidación lipídica in vitro, inducida por el sistema prooxidante Fe³⁺/ ascorbato en homogeneizado de trucha arcoiris (Oncorhynchus mykiss), siendo mejor para el primer extracto, aunque ambas son comparables a la producida por el BHT.
4.6.2 Valor de p-anisidina en aceite de salmones

Los valores de p-anisidina presentaron un comportamiento variado hasta el sexto mes, desde el cual se produce un aumento marcado para las tres dietas estudiadas. Esta variabilidad se explica, en parte, a que la intensidad del color producido por la p-anisidina no depende sólo de la cantidad de compuestos aldehídicos presentes en el aceite, sino también de su estructura; así, un enlace doble de un ácido graso conjugado en comparación al enlace doble de un compuesto carbonílico puede realzar la absorbancia a 350 nm por un factor de 4 o 5 (O’ Brien, 2004). La oxidación secundaria de lípidos de salmón congelado presenta varios ciclos en las fases iniciales del almacenamiento que producen fluctuación en un comienzo (aumento y disminución) para la mayoría de los casos, aunque la tendencia posterior es ir en aumento (Cruz, 2002), tal como lo obtenido en nuestro experimento. Bimbo (1999) establece que el valor de p-anisidina para aceites de pescado de buena calidad puede fluctuar entre 4 y 60, rango bastante amplio, mientras que Masson (1994) estima un valor máximo adecuado del orden de 10, establece un rango entre 10 y 20 para aceite.
de pescado fresco utilizado en dietas para peces y valores sobre 30 para aceites muy oxidados. Los aceites de salmón alimentados con la dieta enriquecida en tocoferoles alcanzaron dicho valor “máximo adecuado” de p-anisidina (10) a los 12 meses de almacenamiento congelado. El valor de p-anisidina no mostró diferencias significativas (P>0,05) entre las 3 dietas en estudio (anexo N°7, tabla N°8). Devia y Echegoyen (2005) también encontraron diferencias significativas para este valor en conservas de Salmón del Atlántico (Salmo salar) adicionadas de extractos naturales (romero, orégano y aceite de oliva) respecto al tiempo de almacenamiento a 40°C durante 170 días, aunque los valores promedio de ellos siempre fueron menores a 10.

4.7 Nitrógeno básico volátil total (NBVT) en músculo de salmones

![Gráfico 4.4: Variación del contenido de nitrógeno básico volátil total (NBVT) en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo de almacenamiento congelado.](image)

Figura Nº 4.4: Variación del contenido de nitrógeno básico volátil total (NBVT) en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo de almacenamiento congelado.
Para el contenido de NBVT se presentaron diferencias significativas ($P \leq 0,05$) entre las 3 dietas en estudio y durante el tiempo de almacenamiento estudiado (anexo N°7, tabla N°9). El NBVT aumentó sostenidamente en el tiempo para la mayoría de los casos, lo que está de acuerdo con lo encontrado por Landeros y López (2005) en músculo de Salmón coho alimentado con la dieta tradicional y conservado por 1 año a -20ºC. Si bien Contreras (2002) plantea que no debiera existir un aumento de NBVT en productos congelados a través del tiempo, las diferencias significativas encontradas en nuestro estudio son muy pequeñas; además los valores obtenidos para este índice fueron siempre menores a los límites establecidos por la Unión Europea (35 mg NBVT /100g) para *Salmo salar* (EU, 1995) y por la legislación nacional (30 mg NBVT /100g) para pescados congelados no elasmobranquios (como es el caso del Salmón coho), establecidos por MINSAL (1997) y SERNAPESCA (2006b), por lo tanto, los salmones alimentados con las 3 dietas de engorda presentan una excelente calidad durante todo el período de conservación al estado congelado.

Ambas dietas con antioxidantes naturales (II y III) presentaron menores valores para el NBVT en Salmón coho, respecto a la dieta control (I) con antioxidantes artificiales; siendo más notable en los salmones alimentados con la dieta que contenía extracto de romero. Esto puede deberse a la actividad antimicrobiana que presentan algunos componentes contenidos en dicho vegetal, provocando una disminución en la flora aerobia mesófila gram negativa, responsable del desarrollo de volátiles nitrogenados (Contreras, 2002). Abutbul *et al.* (2004) encontraron que extractos de *Rosmarinus officinalis* en distintos solventes provocan inhibición del crecimiento de *Streptococcus iniae*, causante de enfermedades en peces cultivados. Govaris *et al.* (2007) suministraron dietas suplementadas con 5 g/kg y 10 g/kg de romero a pavos por 4 semanas, encontrando una reducción significativa en el recuento de aeróbios mesófilos (RAM), bacterias psicrófilas y de *Enterobacteriaceae* en su carne durante el almacenamiento refrigerado de ella por 12 días, en comparación a dietas sin suplementación y suplementadas con acetato de α-tocoferol.
Collins y Charles (1987) demostraron que concentraciones entre 100-150 μg/ml de extractos metanólicos de carnosol, inhiben significativamente el crecimiento in vitro de microorganismos como *Escherichia coli* y *Pseudomonas fluorescens* en comparación a sustancias como BHA y BHT.

4.8 Dimetilamina (DMA) en músculo de salmones

![Graph](image)

Figura Nº 4.5: Variación del contenido de dimetilamina (DMA) en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo.

Para el contenido de DMA no se presentaron diferencias significativas (P>0,05) entre los salmones alimentados con las 3 dietas en estudio (anexo Nº7, tabla Nº10), aunque a través del tiempo de almacenamiento estudiado se presentaron dichas diferencias (P≤0,05). Para los salmones alimentados con la dieta que contiene antioxidantes sintéticos (I) se observa un aumento sostenido en el contenido de DMA durante todo el período de almacenamiento, a diferencia de los salmones alimentados con las dietas que contienen antioxidantes naturales (II y III), que presentaron una disminución de los niveles de DMA a partir del sexto mes de almacenamiento. No obstante, la concentración de esta sustancia no superó en promedio los 0,5 mg en 100 g de músculo de salmón, lo que está de acuerdo con lo expuesto por Landeros y López (2005) para músculo de Salmón coho congelado a -20ºC y alimentado con la dieta.
tradicional. Contreras (2002) determinó DMA en salmón crudo congelado comercializado en Santiago de Chile encontrando un valor 0 mg de N-DMA en 100 g de salmón. Tejada y Careche (1988) encontraron un valor de 10 mg de N-DMA en 100 g de merluza (*Merluccius merluccius L.*), una especie gádida, picada y conservada a –18ºC por 160 días. Se ha observado formación de DMA en 2 especies de pescados congelados no gádidos (*Sebastes ruberimus* y *Microstomus pacificus*) en menor medida que en pescados gádidos formadores de DMA por acción de la enzima OTMAasa contenida en el músculo, como la pescada del Pacífico (*Merluccius productus*). En los no gádidos, dicha producción se llevaría a cabo por vías no enzimáticas que se ven favorecidas por algunos sustratos como Fe +2 y aditivos alimentarios aceptados por la legislación, como EDTA y SO 2; lo mismo podría esperarse en el caso de algunos antioxidantes (Spinelli y Koury, 1981).

4.9 Formaldehído (HCHO) en músculo de salmones

![Gráfico de formaldehído en músculo de salmón coho](image)

Figura Nº 4.6: Variación del contenido de formaldehído (HCHO) en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo de conservación al estado congelado.
Para el contenido de HCHO no se presentaron diferencias significativas (P>0,05) entre los salmones alimentados con las 3 dietas en estudio (anexo N°7, tabla N°11), aunque a través del tiempo de almacenamiento estudiado se presentaron dichas diferencias (P≤0,05). La tendencia presentada es al aumento sostenido en la concentración de dicho compuesto a través de todo el tiempo de almacenamiento, y este comportamiento es muy similar para los salmones alimentados con las 3 dietas en estudio.

Sotelo et al. (1994) encontraron una concentración de 7,5 ppm (0,75 mg/100g) de HCHO en merluza (Merluccius merluccius L.), una especie gádida almacenada entera a -20ºC por 155 días. Fajardo (2002), encontró un valor de HCHO al cuarto mes de almacenamiento congelado a -18ºC de 0,09 μg/ml (0,18 mg/100g) en tollo (Mustelus mentus) y en pejegallo (Callorhynchus callorhynchus) un valor de 0,07 μg/ml (0,14 mg/100g), ambas especies no gádidas. Los salmones de nuestro estudio se encuentran en una situación intermedia entre los dos estudios citados. Rey-Mansilla et al. (2001) postulan que los métodos espectrofotométricos pueden dar cuenta de valores sobreestimados para el contenido de formaldehído en músculo de pescado, puesto que la oxidación de sus lípidos genera malonaldehído y otros compuestos que estarían interfiriendo notablemente dicha determinación. Rehbein y Schmidt (1996) determinaron HCHO en filetes frescos de trucha arcoiris con 2 métodos: en uno espectrofotométrico encontraron 4 mg/kg (0,4 mg/100g) de HCHO, mientras que con el reflectométrico no detectaron dicha sustancia, lo que estaría confirmando lo postulado por Rey-Mansilla et al. (2001). No existen valores reglamentarios de contenido máximo permitido de DMA ni HCHO en pescados congelados, tanto en Chile¹, como en USA, UE ni Japón².

¹ Comunicación Personal, Dr. Emilio Contreras, CECTA-USACH. Santiago, Chile.
² Comunicación Personal, Dr. Santiago Aubourg, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC). Vigo, España.
4.10 Valor pH en músculo de salmones

El valor pH no presentó diferencias significativas (P>0,05) para los salmones alimentados con las 3 dietas en estudio (anexo N°7, tabla N°12), en cambio presentó diferencias significativas (P≤0,05) durante el tiempo de almacenamiento estudiado, aunque dichas diferencias fueron muy pequeñas, ya que los valores de pH se ubicaron en un rango muy estrecho durante todo el período de almacenamiento. Los resultados indican que el pH disminuyó entre el tercer y el noveno mes en todas las muestras analizadas y luego, tiende a aumentar sostenidamente. Este descenso inicial de debe a la producción de ácido láctico, mientras que el aumento posterior se debe a la producción de compuestos básicos provenientes de la degradación enzimática del músculo de pescado (Simeonidou et al., 1997). Estos resultados son contrarios a los obtenidos por Landeros y López (2005) en filetes de Salmón coho congelados a -20ºC durante un año y alimentados con la dieta tradicional, puesto que en dicho estudio los valores de pH se mantuvieron constantes durante todo el tiempo de almacenamiento, no presentándose diferencias significativas (P>0,05).
El valor pH mínimo en los salmones de nuestro estudio está dentro del rango 5,8-6,2 informado por Liston et al. (1968) para la mayoría de las especies de pescado que se encuentran en el momento más intenso del rigor mortis, por lo tanto, la congelación de todos los salmones se llevó a cabo en el período de pre-rigor mortis. Sathivel (2005) encontró un valor pH de 6,5 para Salmón rosa (*Oncorhynchus gorbuscha*) después de 3 meses de almacenamiento congelado y Espinosa (1999) encontró valores de pH de 6,6 en Salmón del Atlántico (*Salmo salar*) y de 6,78 en trucha arcoiris (*Oncorhynchus mykiss*) durante el mismo período de almacenamiento congelado. Ninguno de estos valores se alcanzaron durante todo nuestro estudio. Si bien, el valor pH no es un buen índice para determinar frescura de salmónidos congelados, debido a las fluctuaciones que presenta a lo largo del almacenamiento (Espinosa, 1999), la legislación nacional (MINSAL, 1997) establece que el pH máximo permitido para pescados fraccionados es de 6,8; valor que no se alcanza ni se supera durante los 12 meses de almacenamiento congelado de todos los salmones en estudio.

4.11 Tocoferoles en aceite de salmones

4.11.1 α-tocoferol

Figura Nº 4.8: Variación de la concentración de α-tocoferol en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo.
Para el contenido de \(\alpha \)-tocoferol no se presentaron diferencias significativas entre los salmones alimentados con las diferentes dietas en estudio (anexo Nº7, tabla Nº13) durante todo el período de almacenamiento \((P>0,05)\), pero entre los distintos tiempos de almacenamiento sí existieron diferencias significativas \((P\leq0,05)\). Se observa una tendencia global a la disminución del contenido de \(\alpha \)-tocoferol a partir del tercer mes de almacenamiento, comportamiento que se mantiene hasta los doce meses en el caso de las dietas I y III. Flores (2004) determinó \(\alpha \)-tocoferol en aceite de salmón comercial y encontró un valor de 311 mg/kg, el cual es mayor en 100 mg/kg aproximadamente del valor inicial obtenido en el aceite de salmón alimentado con la dieta de engorda tradicional de nuestro estudio.

Respecto al \(\beta \)-tocoferol, fue detectado en concentraciones traza (del orden de 1 mg/kg o inferiores) en el aceite de muy pocos individuos de este estudio, por lo que no es informado. Estos resultados están de acuerdo con lo reportado por Sigurgisladottir et al. (1994) para músculo de Salmón del Atlántico \((Salmo salar)\), quienes detectaron \(\beta \)-tocoferol en concentraciones despreciables, debido a que casi no se deposita en el músculo de pescados.

4.11.2 \(\gamma \)-tocoferol

![Figura Nº 4.9: Variación de la concentración de \(\gamma \)-tocoferol en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo.](image_url)

Figura Nº 4.9: Variación de la concentración de \(\gamma \)-tocoferol en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo.
Para el contenido de γ-tocoferol hubo diferencias significativas entre los salmones alimentados con las distintas dietas en estudio (anexo Nº7, tabla Nº14) durante todo el periodo de almacenamiento ($P \leq 0.05$), pero entre los distintos tiempos de almacenamiento no existieron diferencias significativas ($P > 0.05$). Se observa que los salmones alimentados con las dietas II y III presentaron un contenido significativamente mayor de γ-tocoferol en sus aceites con respecto a los salmones alimentados con la dieta I, lo cual es concordante con el diseño del experimento, puesto que las dietas II y III tienen niveles superiores de γ-tocoferol libre en comparación a la dieta I. Flores (2004) encontró un valor de 13 mg/kg de γ-tocoferol en aceite de salmón comercial, valor cercano al valor inicial determinado en el aceite de salmón alimentado con la dieta de engorda tradicional y menor a los valores iniciales encontrados en los aceites de salmón alimentados las con dietas adicionadas de tocoferoles (II y III).

4.11.3 δ-tocoferol

![Gráfica de δ-tocoferol](image_url)

Figura Nº 4.10: Variación de la concentración de δ-tocoferol en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo.
Para el contenido de δ-tocoferol no hubo diferencias significativas (P>0,05), tanto entre los salmones alimentados con las distintas dietas en estudio como entre los tiempos de almacenamiento (anexo N°7, tabla N°15). El contenido de δ-tocoferol en el músculo del salmón, presentó un comportamiento errático durante todo el periodo de almacenamiento, puesto que no es posible observar una tendencia clara para ninguna de las 3 dietas en estudio; sin embargo, es posible percibir que para las dietas I y II el contenido de δ-tocoferol disminuye a partir del mes 9, mientras que para la dieta III su contenido deja de ser detectable desde el mismo mes. Flores (2004) no detectó contenido de δ-tocoferol en aceite de salmón comercial, lo cual está acorde al resultado obtenido inicialmente para aceite de salmón alimentado con la dieta control, debido a que este compuesto no siempre es detectado por HPLC cuando se encuentra en concentraciones muy bajas. Este fenómeno es explicado por Sigurgisladottir et al. (1994), puesto que el δ-tocoferol se deposita en menor medida que los tocoferoles α y γ en el músculo de Salmón del Atlántico (Salmo salar), además estos autores señalan que su mayor capacidad antioxidante, respecto al resto de los tocoferoles, ayuda a que se consuma más rápido para proteger los lípidos presentes en el músculo del salmón frente a la peroxidación lipídica.

El contenido de tocoferoles encontrado en el músculo del salmón congelado no da cuenta del contenido total de estos compuestos en el pescado, puesto que éste no sólo dependerá del consumo para prevenir la oxidación lipídica, sino que también de la distribución que presentaban los tocoferoles en el pez al momento del sacrificio. Malone et al. (2004), demostraron que la mayor parte de los tocoferoles presentes en diversas especies de pescado se almacenan en el hígado, seguido de las vísceras y el vientre; y el resto se deposita en el músculo. Dicho contenido dependerá, también de la forma en que se suministre el tocoferol en la dieta, ya que puede estar en forma libre, como éster (acetato de α-tocoferol) o como mezcla de ambos (Carrasco, 2001). Scaife et al. (2000) encontraron valores en continuo y significativo descenso (P≤0,05) para el contenido de α-tocoferol en Salmones del Atlántico (Salmo salar) alimentados con dietas enriquecidas con acetato de α-tocoferol y conservados al estado congelado durante 12 meses, los que son atribuidos al consumo de este antioxidante para
retardar la oxidación lipídica. Sin embargo, Devia y Echegoyen (2005) encontraron un comportamiento similar que el obtenido en nuestro estudio para el contenido de α-tocoferol y γ-tocoferol en conservas de Salmón del Atlántico (Salmo salar) cuyo medio de empaque fue adicionado de antioxidantes naturales, como extracto de romero, aceite de oliva, entre otros. Así, un aumento en la concentración de tocoferoles durante ciertos intervalos de tiempo pudo ocurrir debido a que la alimentación que recibieron los salmones durante la etapa de engorda contiene acetato de α-tocoferol (para cumplir necesidades tanto de vitamina como de antioxidante), del cual sólo una fracción es disuelta al comienzo por los lípidos musculares del salmón, mientras que el resto queda ligado en el tejido del mismo al momento de morir. Así, se produce una reacción de hidrólisis de este compuesto en el músculo del salmón durante el almacenamiento, facilitando la migración paulatina de tocoferoles libres hacia la fase lipídica cuando se han iniciado los mecanismos de peroxidación lipídica, lo que explica el aumento de su concentración a través del tiempo en fases tempranas del almacenamiento (Devia y Echegoyen, 2005).

Sigurgisladottir et al. (1994) postulan que el γ-tocoferol posee una afinidad similar para depositarse en el músculo de Salmón del Atlántico (Salmo salar) respecto al α-tocoferol. Parazo et al. (1998) alimentaron Salmones del Atlántico (Salmo salar) durante 36 semanas con 3 distintas dietas: una sin suplemento de tocoferoles (N-T), otra suplementada con α-tocoferol (A-T) y una tercera suplementada con γ-tocoferol (G-T). Si bien la retención de γ-tocoferol en el músculo de los salmones del grupo G-T fue levemente mayor respecto a la de α-tocoferol en los salmones A-T, este último isómero se depositó más eficientemente en las membranas ricas en fosfolípidos de ambos grupos de Salmón Atlántico; se presume que estas membranas son el sitio funcional para los antioxidantes lipídicos in vivo (Parazo et al., 1998) y en ellas se concentran mayoritariamente los AGPICL (Ackman y Takeuchi, 1986). Ambos isómeros de tocoferol fueron casi igualmente efectivos en la estabilización de los lípidos del músculo de salmón durante el almacenamiento congelado de Salmón del Atlántico a -40°C por 6 meses en comparación con el grupo que no ingirió tocoferoles (N-T).
5. CONCLUSIONES

- Para ninguno de los parámetros analizados en Salmón coho (*Oncorhynchus kisutch*) y en sus respectivas dietas de engorda, se encontraron diferencias significativas (P>0,05) entre los distintos individuos y entre los duplicados analizados respectivamente, por lo que se pudo trabajar con el valor promedio de ellos.

Análisis efectuados a las dietas de engorda:
- El análisis proximal de las tres dietas de engorda permite clasificarlas como dietas elevadas en lípidos.
- El contenido de humedad, proteínas y cenizas de las tres dietas de engorda se encuentra dentro de los valores establecidos en la literatura de alimentos para salmónidos.
- El reemplazo de antioxidantes artificiales por naturales en las dietas de engorda no influyó en su estabilidad oxidativa.

Análisis efectuados en músculo claro de Salmón coho (*Oncorhynchus kisutch)*:
- El análisis proximal del músculo claro del Salmón coho conservado en estado congelado arrojó, para todos los casos, un aumento de la concentración de lípidos y proteínas, y una disminución del contenido de humedad entre el inicio y el final del estudio.
- El contenido de lípidos y el índice de polienes de los salmones alimentados con las 3 dietas, manifiestan un aumento significativo (P≤0,05) entre los meses 9 y 12 de almacenamiento congelado.
- Los resultados de lipoperoxidación (índice de peróxidos y valor de p-anisidina) de los salmones alimentados con dietas adicionadas de antioxidantes naturales, fueron similares (P>0,05) a los obtenidos cuando se utilizaron antioxidantes sintéticos, sin embargo, ambos índices presentaron diferencias significativas (P≤0,05) a través del tiempo de almacenamiento para los salmones alimentados con las tres dietas de engorda.
• El NBVT presentó valores significativamente menores (P≤0.05) en los salmones alimentados con dietas adicionadas de antioxidantes naturales, en especial la carne de los salmones alimentados con la dieta de engorda que contenía la mezcla de tocoferoles con extracto de romero. Este parámetro de frescura presentó diferencias significativas (P≤0.05) durante el tiempo de almacenamiento congelado.
• El contenido de DMA, HCHO, α-tocoferol y el valor pH tuvieron diferencias significativas a través del tiempo de conservación estudiado (P≤0.05), no obstante, entre los salmones alimentados con las diferentes dietas de engorda no se presentaron diferencias significativas (P>0.05).
• El contenido de γ-tocoferol del aceite de Salmón coho no presentó diferencias significativas (P>0.05) durante todo el período de conservación al estado congelado. Hubo diferencias (P≤0.05) entre los salmones alimentados con las tres dietas, siendo su contenido significativamente mayor, para aquellos salmones alimentados con las dietas adicionadas de antioxidantes naturales, en comparación a la dieta tradicional.
• La concentración de δ-tocoferol en aceite de Salmón coho no presentó diferencias significativas (P>0.05) entre los salmones alimentados con las tres dietas ni durante todo el período de almacenamiento congelado.
• El empleo de antioxidantes naturales en la dieta de engorda de Salmón coho de exportación, mantiene los parámetros de peroxidación lipídica y de frescura en salmones HG durante su almacenamiento prolongado al estado congelado (-18°C).
• El reemplazo de antioxidantes sintéticos por naturales en la dieta de engorda para Salmón coho de exportación, es técnicamente factible y altamente recomendable.
6. BIBLIOGRAFÍA

SERNAPESCA (2006b) “Programa de Control de Producto Final, Norma Técnica, Sección 1, Requisitos Generales para la Certificación Sanitaria de los Productos Pesqueros de Exportación” Departamento de Sanidad Pesquera, Valparaíso, Chile. 89p.

ANEXOS

ANEXO N°1
INGREDIENTES Y COMPOSICIÓN CENTESIMAL INTENTADA DE LAS 3 DIETAS EMPLEADAS EN ESTE ESTUDIO

<table>
<thead>
<tr>
<th>Harina de Pescado</th>
<th>Principio Activo</th>
<th>Nombre Comercial</th>
<th>Dieta I (Control)</th>
<th>Dieta II</th>
<th>Dieta III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Etoxiquina</td>
<td>Santoquin</td>
<td>O/F # 1661531</td>
<td>O/F # 1661055</td>
<td>O/F # 1661056</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aceite de Pescado</th>
<th>Principio Activo</th>
<th>Nombre Comercial</th>
<th>Dieta I (Control)</th>
<th>Dieta II</th>
<th>Dieta III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BHT</td>
<td>Ionol CPA</td>
<td>O/F # 1661055</td>
<td>O/F # 1661056</td>
<td>O/F # 1661056</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alimento</th>
<th>Dieta Base</th>
<th>EWOS Gamma</th>
<th>EWOS Gamma</th>
<th>EWOS Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calibre</td>
<td></td>
<td></td>
<td>1500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composición Centesimal (Intentada)</th>
<th>Dieta I (Control)</th>
<th>Dieta II</th>
<th>Dieta III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteína Cruda (%)</td>
<td>43,0</td>
<td>43,0</td>
<td>43,0</td>
</tr>
<tr>
<td>Grasa Total (%)</td>
<td>29,0</td>
<td>29,0</td>
<td>29,0</td>
</tr>
<tr>
<td>Humedad (%)</td>
<td>7,0</td>
<td>7,0</td>
<td>7,0</td>
</tr>
<tr>
<td>Cenizas (%)</td>
<td>6,5</td>
<td>6,5</td>
<td>6,5</td>
</tr>
<tr>
<td>Fibra Cruda (%)</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
</tr>
<tr>
<td>Extracto No Nitrogenado (%)</td>
<td>13,2</td>
<td>13,2</td>
<td>13,2</td>
</tr>
</tbody>
</table>
ANEXO N°2
MATERIALES EMPLEADOS EN ESTE ESTUDIO

- **Humedad**
 - Cápsulas de aluminio
 - Desecador
 - Sílica gel
 - Varillas de vidrio
 - Pinzas metálicas
 - Marcador permanente

- **Materia grasa**
 - Balones de fondo plano de 250 ml
 - Embudo Büchner
 - Matraz Kitasato de 1l
 - Papel metalizado
 - Papel Whatman Nº1
 - Pipetas graduadas de 10 ml
 - Probetas de 100, 250 y 500 ml
 - Frascos de 10 ml de color ámbar
 - Toalla de papel gofrado

- **Proteínas**
 - Bureta de 50 ml
 - Matraz Erlenmeyer
 - Pipetas volumétricas de 20 y 50 ml
 - Tubos de digestión
 - Pipeta Pasteur
 - Marcador permanente
• **Cenizas**
 ◊ Cápsulas de porcelana
 ◊ Desecador
 ◊ Mechero Bunsen
 ◊ Pinzas metálicas
 ◊ Silica gel
 ◊ Marcador permanente

• **Ácidos grasos poliinsaturados de cadena larga ω3 e índice de polienos**
 ◊ Jeringa SGE 1 µl. Hecho en Australia.
 ◊ Matraces volumétricos de 50 ml
 ◊ Perlas de ebullición
 ◊ Pipetas graduadas de 1, 2, 5 y 10 ml
 ◊ Pipetas Pasteur
 ◊ Varillas refrigerantes

• **Índice de peróxidos**
 ◊ Matraz Erlenmeyer 250 ml
 ◊ Microbureta de 10 ml
 ◊ Botellas de vidrio de 100 ml
 ◊ Vasos de precipitado
 ◊ Micropipeta Socorex 100-1000 µl. Hecho en Suiza
 ◊ Pipetas graduadas de 1, 5 y 10 ml
 ◊ Pipetas Pasteur
 ◊ Puntas desechables para micropipetas
 ◊ Toalla de papel gofrado
• **p-anisidina**
 ◦ Matraz aforado con tapa de 25 ml
 ◦ Matraz Kitasato de 2l.
 ◦ Embudo Büchner
 ◦ Papel Whatman Nº1
 ◦ Parafilm
 ◦ Pipetas volumétricas
 ◦ Pipetas Pasteur
 ◦ Tubos de ensayo con tapa plástica
 ◦ Varilla de vidrio
 ◦ Vasos de precipitado
 ◦ Piseta
 ◦ Toalla de papel gofrado
 ◦ Marcador permanente

• **Nitrógeno básico volátil total (NBVT)**
 ◦ Argollas metálicas
 ◦ Bureta
 ◦ Embudos analíticos
 ◦ Frascos plásticos con tapa de 250 ml
 ◦ Matraz Erlenmeyer
 ◦ Nueces
 ◦ Papel Whatman Nº1
 ◦ Pipeta volumétrica de 50 ml
 ◦ Soporte universal
 ◦ Tubos de digestión
 ◦ Vaso precipitado
 ◦ Marcador permanente
• **Dimetilamina (DMA)**
 ◇ Pipetas
 ◇ Tubos de ensayo con tapa plástica
 ◇ Vasos de precipitado
 ◇ Matraces aforados de 100 ml
 ◇ Micropipeta Socorex 100-1000 μl. Hecho en Suiza
 ◇ Piseta
 ◇ Toalla de papel gofrado
 ◇ Marcador permanente

• **Formaldehído (HCHO)**
 ◇ Argollas metálicas
 ◇ Embudos analíticos
 ◇ Frascos plásticos con tapa de 100 ml
 ◇ Papel Whatman Nº1
 ◇ Pipetas graduadas
 ◇ Soporte universal
 ◇ Tubos de centrífuga de acero inoxidable
 ◇ Vasos de precipitado
 ◇ Matraces aforados de 100 ml
 ◇ Micropipeta Socorex 100-1000 μl. Hecho en Suiza
 ◇ Piseta
 ◇ Toalla de papel gofrado
 ◇ Marcador permanente

• **Valor pH**
 ◇ Varilla de vidrio
 ◇ Vaso de precipitado
 ◇ Toalla de papel gofrado
- **Tocoferoles**
 - Equipo de filtración Millipore OM 037. Filter holder 47 mm glass (Incluye embudo, pinzas y base de vidrio). USA.
 - Filtro Millipore Tipo HV 0,45 μm. USA.
 - Jeringa SGE 100 μl. Australia.
 - Matraz aforado de 1 l
 - Matraz aforado ámbar con tapa de 10 ml
 - Matraz Kitasato de 2 l
 - Pipetas Pasteur

- **Estabilidad Oxidativa**
 - Pipetas Pasteur
 - Tubos Rancimat
ANEXO N°3
REACTIVOS QUÍMICOS EMPLEADOS EN ESTE ESTUDIO

- **Humedad**
 - Arena de mar purificada (SiO$_2$) BDH England, Poole.

- **Materia grasa**
 - Agua destilada.
 - Cloroformo (CHCl$_3$) Merck, Alemania, Darmstadt.
 - Metanol (CH$_4$OH) Winkler, Chile, Santiago.

- **Proteínas**
 - Ácido sulfúrico concentrado y de concentración conocida (H$_2$SO$_4$) Merck, Alemania, Darmstadt.
 - Agua destilada.
 - Hidróxido de sodio 0,1 N y 30% (NaOH) Winkler, Chile, Santiago.
 - Indicador Fenolftaleína (C$_{20}$H$_{14}$O$_4$) Merck, Alemania, Darmstadt.
 - Indicador Rojo de metilo (C$_{15}$H$_{15}$N$_3$O$_2$) Merck, Alemania, Darmstadt.
 - Sulfato de cobre pentahidratado (CuSO$_4$ · 5 H$_2$O) Winkler, Chile, Santiago.
 - Sulfato de potasio (K$_2$SO$_4$) Winkler, Chile, Santiago.

- **Cenizas**
 - Agua destilada.

- **Ácidos grasos poliinsaturados de cadena larga ω3 e índice de polienos**
 - Ácido sulfúrico (H$_2$SO$_4$) Merck, Alemania, Darmstadt.
 - Alcohol metílico (CH$_4$O) Winkler, Chile, Santiago.
 - Cloruro de sodio (NaCl) Merck, Alemania, Darmstadt.
 - Indicador fenolftaleína (C$_{20}$H$_{14}$O$_4$) Merck, Alemania, Darmstadt.
 - Hexano (C$_6$H$_{14}$) Winkler, Chile, Santiago.
 - Sodio metálico (Naº) Merck, Alemania, Darmstadt.
 - Hidrogeno Extra Puro AGA, Chile, Santiago.
Índice de peróxidos
- Ácido acético glacial (CH₃COOH) Merck, Alemania, Darmstadt
- Agua destilada
- Almidón ((C₆H₁₀O₅)n) Merck, Alemania, Darmstadt.
- Cloroformo (CH₃Cl) Merck, Alemania, Darmstadt.
- Tiosulfato de sodio (Na₂S₂O₃) Merck, Alemania, Darmstadt.
- Yoduro de potasio (KI) Merck, Alemania, Darmstadt.

p-anisidina
- Ácido acético glacial (CH₃COOH) Merck, Alemania, Darmstadt.
- Acetona (C₃H₆O) Winkler, Chile, Santiago.
- Carbón activo (C) Merck, Alemania, Darmstadt.
- Isooctano (C₈H₁₈) Merck, Alemania, Darmstadt.
- p-anisidina para síntesis (C₇H₉NO) Merck, Alemania, Hohenbrunn.
- Sulfito de sodio (Na₂SO₃) Merck, Alemania, Darmstadt.
- Agua destilada

Nitrógeno básico volátil total (NBVT)
- Ácido bórico 4% (H₃BO₃) Winkler, Chile, Santiago.
- Ácido clorhídrico 0,01 N (HCl) Merck, Alemania, Darmstadt.
- Ácido tricloroacético 5% (C₂HCl₅O₂) Merck, Alemania, Darmstadt.
- Alcohol amílico (C₅H₁₂O) Merck, Alemania, Darmstadt.
- Indicador Tashiro: Rojo de metilo (C₁₅H₁₄N₂O₂Na) Merck, Alemania, Darmstadt.
 + Azul de metileno (C₁₈H₁₈N₂SCl) Winkler, Chile, Santiago + Alcohol etílico al 96% (C₂H₆O) Winkler, Chile, Santiago.
- Oxido de magnesio (MgO) Reutter, Chile, Santiago.
- Agua destilada
• **Dimetilamina (DMA)**
 ◊ Ácido pícrico (C₆H₃N₃O₇) Winkler, Chile, Santiago.
 ◊ Ácido tricloroacético (C₂HCl₃O₂) Merck, Alemania, Darmstadt.
 ◊ Aldehído fórmico (CH₂O₂) Merck, Alemania, Darmstadt.
 ◊ Carbonato de potasio (K₂CO₃) Winkler, Chile, Santiago.
 ◊ Hexano (C₆H₁₄) Winkler, Chile, Santiago.
 ◊ Tolueno (C₆H₅CH₃) Merck, Alemania, Darmstadt.
 ◊ Trimetilamina ((CH₃)₃-N) Merck, Alemania, Hohenbrunn.
 ◊ Sulfato de sodio (Na₂SO₄) Merck, Alemania, Darmstadt.
 ◊ Acetona (C₃H₆O) Winkler, Chile, Santiago.
 ◊ Agua destilada

• **Formaldehído (HCHO)**
 ◊ Ácido clorhídrico 0,5 N (HCl) Winkler, Chile, Santiago.
 ◊ AHMT: 4-amino-3-hidrazino-5-mercapto-1,2,4 triazol (C₂H₆N₆S) Sigma, Alemania, Steinheim.
 ◊ Formaldehído 37% estabilizado con 10% de Metanol (CH₄O) Merck, Alemania, Darmstadt.
 ◊ Hidróxido de potasio 0,2N y 5N (KOH) Merck, Alemania, Darmstadt.
 ◊ Hidróxido de sodio 0,5N (NaOH) Winkler, Chile, Santiago.
 ◊ Sulfato de zinc heptahidratado (ZnSO₄·7 H₂O) Merck, Alemania, Darmstadt.
 ◊ Peryodato de Potasio (KIO₄) Merck, Alemania, Darmstadt.
 ◊ Acetona (C₃H₆O) Winkler, Chile, Santiago.
 ◊ Agua destilada

• **Valor pH**
 ◊ Agua destilada
 ◊ Solución tampón calibradora pH 4 y 7 Merck, Alemania, Darmstadt.
• **Tocoferoles**
 ◊ 2-propanol grado HPLC (C₃H₈O) Merck, Alemania, Darmstadt.
 ◊ Estándar tocoferol DL-α, β, γ, δ. Merck, Alemania, Darmstadt.
 ◊ Hexano para cromatografía de fase liquida (C₆H₁₄) Merck, Alemania, Darmstadt.

• **Estabilidad oxidativa**
 ◊ 2-propanol grado HPLC (C₃H₈O) Merck, Alemania, Darmstadt.
 ◊ Acetona (C₃H₆O) Winkler, Chile, Santiago.
 ◊ Agua destilada
 ◊ Extran MA 01 alcalino Merck, Alemania, Darmstadt.
 ◊ Hidróxido de potasio (KOH) Merck, Alemania, Darmstadt.
ANEXO Nº4
EQUIPOS EMPLEADOS EN ESTE ESTUDIO

Almacenamiento de salmones
 o Congelador Whirpool no frost WVG25 (-18ºC). Brasil

Humedad
 ◊ Balanza analítica Precisa 125A. Suiza
 ◊ Estufa Heraeus TU 60/60, W.C. Alemania

Materia grasa
 ◊ Balanza Precisa 1620D. Suiza.
 ◊ Baño termorregulado Büchi B-490. Suiza
 ◊ Bomba de vacío de anillo líquido Bertuzzi E7596. Italia
 ◊ Mezclador Waring Blender 7012S USA
 ◊ Rotavapor Büchi R-205. Suiza.

Proteínas
 ◊ Balanza analítica Precisa 125A. Suiza
 ◊ Unidad de Destilación Büchi B-323. Suiza
 ◊ Digestor Büchi B-426. Suiza
 ◊ Campana de extracción de gases

Cenizas
 ◊ Balanza analítica Precisa 125A. Suiza
 ◊ Campana de extracción de gases.
 ◊ Mufla Heraeus Hanau. Ni-Cr, temperatura máx. 1050ºC. Alemania
Ácidos grasos poliinsaturados de cadena larga $\omega 3$ e índice de polienos

- Balanza analítica Precisa 125A. Suiza
- Columna capilar de sílica fundida BPX-70. Largo 50mm/diámetro interno 0,25/espesor de película de 0,2μm.
- Cromatógrafo de gases Hewlett-Packard 5860 serie II, con detector de ionización de llama (FID). Alemania
- Integrador eléctrico Hewlett-Packard 3395. Alemania.

Índice de peróxidos

- Balanza analítica Precisa 125A. Suiza
- Calefactor/agitador eléctrico Thermolyne Nuova II Stir Plate. USA

p-anisidina

- Balanza analítica Precisa 125A. Suiza
- Bomba de vacío de anillo líquido Bertuzzi E7596. Italia
- Espectrofotómetro ATI Unicam UV/Vis Spectrometer UV3-200, equipado con el Software Vision version 2.11. Inglaterra

Nitrógeno básico volátil total (NBVT)

- Balanza Precisa 1620D. Suiza
- Congelador Sanyo Medical Freezer MDF-U332 (-30ºC). Japón
- Unidad de destilación Büchi B-323. Suiza
- Mezclador Waring Blender 7012S. USA

Dimetilamina (DMA)

- Balanza Precisa 1620D. Suiza
- Espectrofotómetro ATI Unicam UV/Vis Spectrometer UV3-200, equipado con el Software Vision version 2.11. Inglaterra
- Agitador para tubos de ensayos Barnstead/Thermolyne Maxi Mix II, modelo M37610-26, tipo 37600.USA
- Congelador Sanyo Medical Freezer MDF-U332 (-30ºC). Japón
- Mezclador Waring Blender 7012S. USA
Formaldehído (HCHO)
◊ Balanza Precisa 1620D. Suiza
◊ Calefactor/agitador eléctrico Thermolyne Nuova II Stir Plate. USA.
◊ Centrífuga Denley BS 400, 6000 rpm máx. Inglaterra.
◊ Homogenizador celular Ultraturrax T25. Janke & Kunkel, IKA Labortechnik. Alemania
◊ Congelador Sanyo Medical Freezer MDF-U332 (-30°C). Japón

Valor pH
◊ Balanza Precisa 1620D. Suiza
◊ Calefactor/agitador eléctrico Thermolyne Nuova II Stir Plate. USA.
◊ Microprocesador pH-metro WTW pH 537. Alemania
◊ Electrodo combinado Sentix WTW Sp. Alemania

Tocoferoles
◊ Balanza analítica Precisa 125A. Suiza
◊ Bomba Merck Hitachi L-7110. Lachrom Flujo 1 ml/min. Loop 20 μl. Japón
◊ Columna: LiChroCart 250-4 LiChrospher Si60 (5μm). Japón
◊ Detector de fluorescencia Merck Hitachi F-1050. Longitud de onda excitación/emisión a 290/330nm. Japón
◊ Software Clarity- Chromatography SW, DataApex 2005.

Estabilidad oxidativa
◊ Balanza analítica Precisa 125A. Suiza
◊ Rancimat 679 Metrohm. Suiza
ANEXO N°5
MÉTODOLOGÍAS EMPLEADAS EN ESTE ESTUDIO

- **Humedad**: método gravimétrico 950.46B para músculo y 930.15 para dietas animales (AOAC, 1995).

 Consiste en una desecación en estufa de aire forzado a 105ºC para músculo y de 135ºC para las dietas hasta masa constante. Como la muestra contiene un porcentaje importante de materia grasa, es recomendable emplear arena para acelerar la salida de agua al aumentar la superficie de contacto.

 Procedimiento:
 - Se colocan 2 cápsulas de aluminio con unos 5g de arena de mar purificada cada una y una varilla de vidrio en estufa por 1 h a 105ºC. Se debe cuidar que la arena cubra todo el fondo de la cápsula.
 - Se llevan a desecador (20 min.) y se pesan en balanza analítica.
 - Se pesa 1g de muestra homogeneizada en cada cápsula tarada y se mezcla con la arena, ayudándose con la varilla de vidrio, la cual debe ser tomada con la ayuda de un trozo de toalla de papel.
 - Se registra la masa en balanza analítica.
 - Se coloca todo el conjunto en la estufa y cada 2 h. se controla la pérdida de masa, enfriando previamente en el desecador hasta lograr masa constante en el tiempo. Por diferencia de masa se obtiene el porcentaje de humedad en alimento, según:

\[
\% \text{ humedad} = \frac{(m_2 - m_3)}{(m_2 - m_1)} \cdot 100
\]

 Donde:
 - \(m_1\): Masa de la cápsula vacía, la varilla de vidrio y la arena (g).
 - \(m_2\): Masa de la cápsula vacía, la varilla de vidrio, la arena y la muestra húmeda, antes del secado (g).
 - \(m_3\): Masa de la cápsula vacía, la varilla de vidrio, la arena y la muestra desecada (g).
- **Materia grasa**: extracción Bligh & Dyer (1959)

 Se aplica para extraer lípidos de tejidos vegetales con 80% de humedad. En caso de que la humedad sea diferente es necesario ajustarla a ese valor. La grasa es separada por la adición de solventes (cloroformo, metanol y agua destilada) y por agitación. Luego se filtra y deja en reposo por 24 horas. La fase cloroformo-grasa es separada de la fase metanol-agua para posteriormente ser concentrada y cuantificada. El resultado se expresa como g de materia grasa en 100g de muestra.

Procedimiento:
- Se pesan 100 g de muestra en balanza granataria
- Se llevan a un mezclador Waring Blender, donde se homogeneiza por 2 min con 100 ml de cloroformo y 200 ml de metanol.
- Luego se añade 100 ml de cloroformo y 100 ml de agua destilada y se homogeneiza por 30 segundos adicionales.
- La mezcla se filtra en un embudo Büchner a presión reducida y empleando un papel Whatman Nº 1.
- Una vez finalizada la filtración, se lava el vaso y el residuo con 25 ml de cloroformo, se traspasa el filtrado a una probeta de 500 ml
- Se tapa la probeta con papel metalizado y se deja reposar 24h.
- Transcurrido este tiempo se saca la capa superior de metanol-agua por aspiración, empleando una trompa de vacío.
- Se lleva toda la fase clorofórmica a un balón de fondo plano previamente tarado en balanza analítica y se evapora a presión reducida empleando un evaporador rotatorio y un baño de agua a 40ºC, hasta que no se observa condensación de cloroformo.
- Se retira el balón, se seca con papel absorbente y se registra la masa en balanza analítica (aceite + balón). Por diferencia, se obtiene el contenido de aceite, el que se expresa como g de materia grasa en 100g de muestra.
- **Proteínas**: método de Kjeldahl con catalizador de cobre 928.08 para músculo y 984.13 para dietas, usando para ambos un factor de 6,25 para conversión de nitrógeno a proteína (AOAC, 1995).

 El método se basa en la destrucción de la materia orgánica mediante una digestión de la muestra con una mezcla catalizadora y ácido sulfúrico concentrado, posteriormente se destila en un destilador Büchi, el NH₃ es recuperado en un matraz con H₂SO₄ 0,1N.

 Procedimiento:
 - Pesar alrededor de 1 g de muestra en balanza analítica y colocarla en un tubo digestor.
 - Agregar al tubo digestor 12,6 g de mezcla reaccionante (12 g de K₂SO₄ + 0,6 g de CuSO₄).
 - Agregar bajo campana 20 ml de H₂SO₄ concentrado.
 - Llevar el tubo de digestión a ebullición en la unidad de digestión Büchi, abriendo completamente la llave de vacío y dejando reaccionar por 6 h o hasta que desaparezca el color negro.
 - Dejar enfriar hasta que no salgan vapores blancos, si quedan residuos negros en las paredes, desprenderlos con agua destilada y devolver el tubo al equipo digestor hasta obtener un líquido claro.
 - Agregar al tubo agua destilada hasta 1/3 de su altura y 1 ml de indicador de fenolfaleína.
 - Hacer andar el equipo destilador Büchi sólo con agua con el fin de limpiarlo, esta operación se debe realizar al comienzo, entre cada muestra y al final de la destilación.
 - Conectar el tubo de digestión en la unidad de destilación Büchi y abrir la llave de agua de enfriamiento.

 - Programar el equipo de la siguiente manera:
 * Agua: 0 ml
 * NaOH 30%: 80-90 ml
 * Delay: 5 seg
 * Tiempo de destilación: 6 min o el tiempo necesario para recoger por lo menos 150 ml de destilado
- Recolectar los vapores de NH₃ a la salida del destilador en un matraz Erlenmeyer de 500 ml que contenga 50 ml de H₂SO₄ y 4 gotas de indicador rojo de metilo.
- Valorar el exceso de ácido con NaOH 0,1N hasta viraje a color amarillo débil.
- Determinar mg de nitrógeno reaccionantes con la siguiente fórmula:

\[
\% \text{ proteína} = \frac{(V_1 \cdot N_1 - V_2 \cdot N_2) \cdot 14 \cdot 6.25}{1000 \cdot m} \cdot 100
\]

Donde:

N₁, V₁: Normalidad y volumen inicial de H₂SO₄
N₂, V₂: Normalidad y volumen gastado de NaOH
m: Masa de muestra (g).

El contenido de proteína se expresa como g de proteína en 100g de muestra multiplicando por el factor 6,25 que corresponde al contenido promedio (16%) de nitrógeno en 100 g de proteína = 100/16 y el valor 14 corresponde a la masa atómica del nitrógeno.

• Cenizas: método gravimétrico 942.05 en alimento para salmones y 920.153 en músculo (AOAC, 1995).

Procedimiento:

- Se pesan en balanza analítica cerca de 1 g de muestra triturada en una cápsula de porcelana previamente tarada, la cual se debe identificar con tinta especial.
- Se calcina con mechero Bunsen bajo campana de extracción hasta que no se desprendan humos de ningún tipo.
- Luego se traslada la cápsula a la mufla para calentar la muestra a 550ºC, por un tiempo aproximado de 6h. Si transcurrido dicho tiempo no se obtienen cenizas de color blanco, trasladar la cápsula a un desecador y luego suspender las cenizas en agua destilada (cuidando de no retirarlas de la cápsula); evaporar el agua con la ayuda de un mechero Bunsen, para volver a introducir la cápsula a la mufla a 550ºC por 2 a 3 horas adicionales, o hasta obtener cenizas blancas.
- Para pesar se traslada la cápsula con pinzas al desecador y luego a la balanza analítica.
- La masa final en el tiempo debe ser constante. Por diferencia de masa se obtiene la cantidad de cenizas en el total de muestra, luego se calcula la masa de cenizas por cada 100 g de alimento fresco, según:

\[
\text{% cenizas} = \frac{(M3 - M1)}{(M2 - M1)} \times 100
\]

Donde:
M1: Masa de la cápsula (g).
M2: Masa de la cápsula más la muestra fresca (g).
M3: Masa de la cápsula más la muestra calcinada (g).

- Ácidos grasos poliinsaturados de cadena larga ω3 (AGPICL ω3) e índice de polienos: modificación del método propuesto en UNE 55-037-73 (IRANOR, 1973).

 Aplicable a cualquier mezcla de ácidos grasos después de conversión a esteres metílicos, mediante cromatografía de gas líquido.

Procedimientos:
- Pesar en un matraz volumétrico de 50 ml 0,1 g de aceite, utilizando pipeta pasteur y balanza analítica.
- Agregar al matraz 10 ml de metilato de sodio (5g de sodio en 1 l de metanol) más 2 perlas de ebullición.
- Se coloca una varilla refrigerante de metilación y se calienta hasta ebullición dejándolo en esta condición durante 10 min.
- Luego se saca la varilla, se tapa y deja enfriar.
- Se añade al matraz una gota de fenolftaleína.
- Se agrega al matraz una solución de ácido sulfúrico – metanol (60 ml de ácido sulfúrico en 1 l de metanol) gota a gota hasta lograr decoloración (se añade una gota de exceso).
- Se coloca la nuevamente la varilla de metilación y se calienta hasta ebullición, dejándolo en esta condición durante 20 min.
- Sacar la varilla y tapar.
- Dejar enfriar y agregar 1,5 ml de hexano.
- Invertir el matraz 3 veces para extraer los ésteres metílicos.
- Para que la fase orgánica suba, se agrega una solución de NaCl 10% hasta cerca del aforo y dejar reposar.
- Inyectar 0,5 μl de la fase superior al cromatógrafo de gases. La temperatura inicial del horno se fija en 160°C, durante tres minutos y luego se programa con un incremento de 1°C/min hasta alcanzar 230°C. Tanto la temperatura del inyector como la del detector son de 240°C, usando hidrógeno como gas portador.
- Comparar los tiempos de retención de la muestra con los tiempos de retención de un estándar de ácidos grasos inyectado previamente, identificar los ácidos grasos presentes en la muestra.
- Los resultados obtenidos se expresan como composición porcentual de ácidos grasos y por el índice de poliënios (PI), que se obtiene de la siguiente manera (Lubis y Buckle, 1990):

\[
\text{Índice de Poliënios} = \left[\frac{\%(C20:5 \omega 3) + \%(C22:6 \omega 3)}{\%(C16:0)} \right]
\]

Donde:
\%\(C20:5 \omega 3\): Concentración de ácido eicosapentaenoico (EPA) en base grasa.
\%\(C22:6 \omega 3\): Concentración de ácido docosahexaenoico (DHA) en base grasa.
\%\(C16:0\): Concentración de ácido palmitico en base grasa.

- **Índice de peróxidos**: método oficial AOCS, Cd 8-53 (1993).
 Consiste en determinar por yodometría la formación de peróxidos formados en el aceite.

Procedimiento:
- Se pesa en un matraz Erlenmeyer de 250 mL, 1 g de aceite en balanza analítica.
- Se añade al matraz 6 ml de una mezcla ácido acético-cloroformo (3:2) y 0,1 ml de una solución saturada de KI.
- Agitar vigorosamente durante 1 min en oscuridad.
- Se añade al matraz 6 ml de agua destilada.
- Luego, titular con Na\(_2\)S\(_2\)O\(_3\) 0,01 N hasta la desaparición de la coloración amarilla.
- Añadir al matraz 0,1 ml de solución almidón 1%.
- Si hay formación de coloración azul/negra seguir titulando con Na₂S₂O₃ hasta su desaparición.

Los resultados se expresan en meq O₂/kg de materia grasa y se determinan mediante la siguiente fórmula:

\[
IP = \frac{V \cdot N \cdot 1000}{M}
\]

Donde:
- V: Volumen de solución de Na₂S₂O₃ 0,01N gastado (ml).
- N: Concentración de la solución de Na₂S₂O₃ utilizada (N).
- M: Masa de aceite empleado para efectuar la determinación (g).

Aplicable a grasas y aceites animales y vegetales. Este valor da cuenta de la presencia de aldehídos (principalmente 2-alquenales y 2,4-dienales) en el aceite, los cuales se consideran como productos secundarios de la oxidación de los mismos.

Procedimiento:
- Pesar entre 0,5 – 1,0 g de aceite en un matraz volumétrico de 25 ml, luego diluir y diluir al volumen con isooctano.
- Agregar la solución a una cubeta y medir la absorbancia (Ab) a 350 nm, usando como blanco una cubeta con isooctano.
- Pipetear exactamente 5 ml de la solución a un tubo de ensayos de 10 ml con tapa y 5 ml de solvente en otro tubo de ensayos de 10 ml con tapa.
- Dosificar con pipeta 1 ml de solución de p-anisidina a cada tubo y agitar. Esta solución se prepara disolviendo 0,0625 g de cristales de p-anisidina (pesados en balanza analítica) con ácido acético glacial en un matraz aforado de 25 ml, una vez preparada, debe protegerse de la luz utilizando papel metalizado para cubrir el matraz. Esta solución debe tener una absorbancia menor a 0,200 medida a 350 nm utilizando ácido acético glacial como blanco, en caso contrario, debe descartarse u prepararse nuevamente.
- Dejar reaccionar en oscuridad por 10 min.
- Luego agregar la solución a una cubeta y medir la absorbancia (As) a 350 nm usando otra cubeta con la solución del segundo tubo como blanco de referencia. El valor p-anisidina se determina con la siguiente fórmula:

\[
p - Av = \frac{25 \cdot (1,2 \cdot As - Ab)}{M}
\]

Donde:
As: Absorbancia de la solución después de la reacción con p-anisidina.
Ab: Absorbancia de la solución de grasa en isoctano.
M: Masa de aceite (g).

PREPARACION DE LOS CRISTALES:

Usar guantes de goma durante todo el procedimiento, ya que el reactivo de p-anisidina puede resultar cancerígeno al estar en contacto con la piel.
- En un baño termostaticado calentar entre 200-250 ml de agua destilada hasta 75ºC
- Pesar 4 g de p-anisidina para síntesis en un vaso de precipitado, usando balanza granataria y añadir 100ml de agua destilada a 75ºC
- Añadir a la mezcla 2 g de carbón activo y 0,2 g de sulfito de sodio, agitar constantemente bajo campana de extracción, manteniendo el vaso en el baño termostaticado a 75ºC durante 5 min.
- Filtrar al vacío usando doble papel Whatman N°1. Si se observa paso de carbón activo al filtrado, debe repetirse el procedimiento.
- Llevar el filtrado a un matraz Erlenmeyer protegido de la luz con papel metilizado y tapado con parafilm.
- Dejar en el refrigerador hasta que alcance una temperatura cercana a los 0 ºC y mantenerla durante al menos 4 horas (o preferiblemente durante toda una noche). Simultáneamente, debe prepararse un matraz con 1 l de agua destilada que se lleva al refrigerador, para que alcance una temperatura cercana a los 0 ºC durante el mismo tiempo que se mantendrán enfriando los cristales.
- Transcurrido este tiempo, filtrar la p-anisidina cristalizada a presión reducida con papel Whatman N°1.
- Lavar los cristales con agua destilada a 0°C a medida que se efectúa la filtración. Si hay formación de hielo éste se debe retirar.
- Los cristales formados se sacan con una espátula limpia y se llevan a una botella de vidrio ámbar. Si no se cuenta con ésta, puede usarse una cápsula de porcelana.
- Dejar el recipiente abierto con los cristales en un desecador durante 5 a 10 min en la oscuridad.
- Transcurrido este tiempo, tapar el recipiente contenedor de los cristales y almacenarlos siempre dentro del desecador. En el caso que se emplee la cápsula de porcelana, ésta debe cubrirse con papel metalizado para proteger los cristales de la exposición a la luz. Los cristales obtenidos no debieran sufrir un pardeamiento apreciable durante un año, si se almacenan en la oscuridad y a bajas temperaturas (0-4°C).

- **Nitrógeno básico volátil total (NBVT):** método de Gallardo *et al.* (1979), modificado por Contreras (1999).

 Procedimiento:
 - Se pesan 12,5 g de muestra, adicionar 75 ml de ácido tricloroacético (TCA) al 5%.
 - Homogenizar por 2 minutos en un mezclador Waring Blender y dejar en reposo por 15 minutos.
 - Filtrar usando papel Whatman Nº1 con plegado múltiple.
 - Llevar el extracto (filtrado) a una botella de plástico limpia y congelarlo a -30°C hasta el momento de la determinación
 - En un tubo de destilación Kjeldahl agregar 2 g de MgO más 50 ml del extracto.
 - Preparar un matraz con 15 ml de H₃BO₃ al 4% y 2-5 gotas de indicador Tashiro para recoger el destilado.
 - Destilar en equipo Büchi hasta completar en el matraz un volumen aproximado de 150 ml, el programa a utilizar en la unidad de destilación es el siguiente: 120 ml de agua destilada, 0 ml de NaOH, 5 seg de tiempo de espera (delay) y un tiempo de destilación de 6 min.
 - Titular con HCl 0,01N hasta lograr viraje a color púrpura pálido.
Los resultados se expresan en mg N/100 g de muestra, aplicando la siguiente fórmula:

\[
NBVT = \frac{V \cdot N \cdot 14 \cdot V_T \cdot 100}{(V_1 \cdot m_1)}
\]

Donde:

- **NBVT**: Contenido de nitrógeno básico volátil total (mg/100g).
- **V**: Volumen de HCl empleado para valorar (ml).
- **N**: Concentración del HCl empleado para valorar (N).
- **14**: Masa atómica del nitrógeno.
- **V_T**: Volumen de ácido tricloroacético al 5% m/v necesario para preparar el extracto (75ml) más el volumen de agua que aportan los 12,5g de muestra (este último valor debe obtenerse a partir del % de humedad del músculo de salmón).
- **V_1**: Volumen de la alícuota de extracto tomada para efectuar la determinación (50ml).
- **m_1**: Masa de músculo de salmón necesaria para preparar el extracto (12,5 g).

- **Dimetilamina (DMA)**: método de Dyer (1945), modificado por Contreras (2002).

La DMA ((CH\textsubscript{3})\textsubscript{2}-NH) es una amina secundaria con un hidrógeno sustituible, por lo que tiene menor tendencia a pasar a la fase orgánica del sistema respecto de una amina terciaria como la TMA ((CH\textsubscript{3})\textsubscript{3}-N), a menos que la fase acuosa se sature de solutos y el pH se mantenga alcalino. La concentración de DMA se determina espectrofotométricamente por medio de la formación de picrato, un ion amarillo intenso, en un sistema ligeramente polar y anhidro formado por una parte de hexano más tres partes de tolueno. La reacción química se muestra a continuación:
El agua echa a perder inmediatamente la reacción, pues se disocia todo el ácido pícrico, formándose un precipitado de color amarillo.

Procedimiento:
- Se utiliza el mismo extracto preparado para determinar NBVT.
- En un tubo de ensayo de 20 ml con tapa de plástico se agrega 1 ml de extracto, 1 ml de aldehido fórmico al 37 %, 3 ml de K₂CO₃ al 50% y 4 ml de hexano.
- Se agita la mezcla enérgicamente por 1 minuto y se espera un tiempo discreto para la separación de las fases.
- En un tubo de ensayo seco, de 10 ml con tapa de plástico se coloca 1 ml de la capa de hexano, cuidando de no arrastrar parte de la fracción acuosa y 3 ml de una solución de ácido pícrico al 0,02 % en tolueno seco, se agita suavemente y se espera 5 minutos para leer TMA y DMA a 410 nm en espectrofotómetro UV-Vis (Sistema 1).
- Luego en otro tubo de ensayo de 20 ml con tapa de plástico se agrega 1 ml de extracto, 1 ml de agua destilada, 2 ml de K₂CO₃ al 50% y 4 ml de hexano.
- Se agita la mezcla enérgicamente por 1 minuto, se espera un tiempo discreto para la separación de las fases.
- En un tubo de ensayos seco, de 10 ml con tapa de plástico se coloca 1 ml de la capa de hexano, cuidando de no arrastrar parte de la fracción acuosa y 3 ml de una solución de ácido pícrico al 0,02 % en tolueno seco, se agita suavemente y se espera 5 minutos para leer TMA a 410 nm en espectrofotómetro (Sistema 2).
La cantidad de DMA es igual a la diferencia entre el sistema 1 y el sistema 2, y se calcula a partir de la siguiente curva estándar de TMA:

Para expresar la concentración de DMA como mg DMA/100g de músculo de salmón, debe aplicarse la siguiente fórmula:

\[C_{DMA} = \frac{(A_1 - A_2)v_{TCA} \cdot 100}{(31,084 \cdot m)} \]

Donde:

\(C_{DMA} \): Concentración de DMA (mg/100g).
\(A_1 \): Absorbancia del sistema 1 (TMA + DMA).
\(A_2 \): Absorbancia del sistema 2 (TMA).
\(v_{TCA} \): Volumen de ácido tricloroacético al 5% m/v necesario preparar el extracto (75ml).
\(M \): Masa de músculo de salmón necesaria para preparar el extracto (12,5 g).
\(v_A \): Volumen de la alícuota de extracto tomada para efectuar la determinación (1ml).
• Formaldehído (HCHO). Método AHMT propuesto por Yamagata y Low (1995).

El método se basa en la extracción del formaldehído (HCHO) con ZnSO₄ y posterior reacción del HCHO y el 4-amino-3-hidrazino-5-mercapto-1,2,4 triazol (AHMT), que forman un derivado de tetrazol color violeta. La concentración de formaldehído se determina espectrofotométricamente midiendo la absorbancia a una longitud de onda de 550 nm:

Procedimientos:
PREPARACION DEL EXTRACTO:
- Se pesan 5 g de músculo de salmón en balanza granataria y se lleva a un tubo de centrífuga de acero inoxidable
- Se agrega 10 ml de NaOH 0,5 N al músculo y se tritura completamente en un homogeneizador celular (Ultraturrax), por 30 segundos a 8000 rpm.
- Luego se adicionan 10 ml de ZnSO₄·7H₂O al 12 % y se homogeneiza por 30 segundos más en el homogeneizador celular.
- Se deja reposar por 30 minutos.
- Luego, el extracto se centrifuga a 5.000 rpm por 8 minutos y se filtra utilizando un papel Whatman Nº1 con plegado múltiple.
- El residuo se lava dos veces con 10 ml de agua destilada y se filtra.
- El filtrado se enrasa a 100 ml y se guarda congelado a -30°C hasta que se realice la determinación.

DETERMINACION:
- En un tubo de ensayo de 10 ml con tapa de plástico se agrega 2 ml de extracto, 2 ml de KOH 5N y 2 ml de AHMT (4-amino-3-hidrazino-5- mercapto-1,2,4 triazol).
- Se mezcla suavemente, se tapa el tubo y se deja por 20 minutos a temperatura ambiente.
- Luego se adiciona 2 ml de KIO₄. La mezcla se agita suavemente y se lee la absorbancia del color violeta a 550 nm.
La cantidad de HCHO se calcula a partir de la siguiente curva estándar de formaldehído:

![Curva de calibración](image)

Los resultados se expresan como mg HCHO/100g de muestra, de acuerdo a la siguiente conversión:

\[
C_{HCHO} = \frac{\left(A + 6,4 \cdot 10^{-3}\right) \cdot v_T \cdot 100 \cdot 10^{-3}}{m}
\]

Donde:

- \(C_{HCHO}\): Concentración de formaldehído (mg/100g).
- \(A\): Absorbancia de la mezcla.
- \(v_T\): Volumen total del extracto (100ml).
- \(10^{-3}\): Factor de conversión de \(\mu g\) a mg
- \(m\): Masa de músculo de salmón necesaria para preparar el extracto (5 g).
- **Valor pH**: método potenciométrico de Scott et al. (1988), modificado por Suvanich et al. (2000).

Procedimiento:
- Pesar 1 g de muestra homogenizada en un vaso de precipitado de 100 ml.
- Agregar 9 ml de agua destilada previamente hervida y enfriada.
- Agitar con una varilla de vidrio.
- Introducir el electrodo a la suspensión formada y registrar el valor pH entregado por lectura directa del potenciómetro, el cual se encuentra corregido para una temperatura de 25°C.

- **Tocoferoles**: método oficial AOCS Ce 8-89 (1993).

Consiste en disolver los aceites provenientes de la extracción de lípidos en hexano HPLC, para luego separar individualmente los tocoferoles α, β, γ y δ por cromatografía líquida de alta eficiencia y compararlos con un estándar de tocoferoles comercial.

Procedimientos:

PREPARACIÓN DE FASE MÓVIL:
- En un matraz aforado de un litro agregar hexano para cromatografía HPLC hasta la mitad de su capacidad aproximadamente añadir sobre él 5 ml de 2-propanol y completar hasta el aforo con hexano para cromatografía HPLC.
- Filtrar la fase móvil anteriormente preparada en el equipo de filtración al vacío Millipore usando un filtro HV de 0,45μm, teniendo la precaución de que el equipo este limpio y seco.
- Trasladar la fase filtrada a un frasco desde el cual se alimentará la bomba que forma parte del cromatógrafo.

PREPARACIÓN DE LA MUESTRA:
- Pesar en balanza analítica alrededor de 0,1 g de aceite en un matraz aforado ámbar de 10 ml con tapa.
- Aforar con hexano para cromatografía HPLC, tapar y voltear tres veces el matraz para homogenizar el contenido.
- Guardar en congelación hasta su análisis.
PROCEDIMIENTO:
- Encender el detector de fluorescencia y la lámpara de éste. Verificar que la longitud de onda de excitación esté fijada en 290 nm y la de emisión en 330 nm. Esperar 5 min.
- Encender la bomba y el computador que se encuentra conectado al equipo. La fase móvil debe estar conectada para la alimentación de la bomba. Abrir llave de purga y pulsar el botón respectivo. Purgar durante 1 min o hasta que no se observe la presencia de burbujas a través de la manguera de entrada y salida de la fase móvil.
- Aumentar el flujo de ingreso de la fase móvil paulatinamente hasta alcanzar el valor de 1 ml/min. Simultáneamente accionar el software que permite la visualización de los resultados. Esperar que la señal entregada por el software sea constante, en el caso que no lo sea verificar que la señal entregada por el detector se encuentre alrededor de las 2000 unidades.
- Inyectar con una jeringa adecuada para este propósito 80 μl de la solución estándar de tocoferoles de concentración conocidas.
- Verificar la elusión de cada uno de los tocoferoles estándar en el monitor, una vez que aparezca el último pico se procederá a detener la lectura. Esperar hasta que la señal se estabilice nuevamente para inyectar la muestra siguiendo el mismo procedimiento utilizado para el estándar. El tiempo de elusión del último peak del estándar será el tiempo programado para la lectura de las muestras sucesivas.
- Finalizado cada análisis el software entrega una tabla con las áreas de cada peak y el tiempo de elusión respectivo para cada tocoferol.
Los resultados (para cada tocoferol) se determinan con la siguiente fórmula:

\[
C_t = \frac{C \cdot a \cdot v}{A \cdot m}
\]

Donde:
- \(C_t\): Contenido de cada tocoferol (mg/kg)
- \(C\): Concentración de tocoferol estándar (μg/ml).
- \(a\): Promedio de las áreas de tocoferol de la muestra.
- \(v\): Volumen del matraz en q se preparó la solución (10 ml).
- \(A\): Promedio de las áreas obtenidas del tocoferol estándar.
- \(m\): Masa del aceite (g).

Consiste en determinar el tiempo de resistencia a la termooxidación de la materia grasa sometiendo al calentamiento en presencia de un flujo constante de aire hasta que ésta, por oxidación, genera compuestos volátiles que son arrastrados con aire hasta un recipiente con agua destilada. El ingreso de los compuestos volátiles provoca un cambio de conductividad del agua, el tiempo transcurrido para producir los volátiles y provocar el cambio de conductividad es equivalente al tiempo de inducción de la oxidación del lípido.

Procedimientos:

- Llenar los tubos de conductividad con 50 ml de agua destilada y conecte los electrodos sobre ellos. Verificar que la conductividad del agua en el tubo sea menor a 25 μS/cm.
- Pesar 2,5 g de aceite de salmón en un tubo Rancimat en balanza analítica cuidando que toda la muestra quede en el fondo del tubo de reacción, evitando la acumulación de ésta en las paredes laterales del tubo.
- Ingresar las condiciones de trabajo en el panel: temperatura (80°C para aceite de pescado) y velocidad del papel (1 cm/h).
- Conectar cada tubo de reacción al tubo de conductividad y a las entradas de aire. Verificar que el aire comprimido ingresado este libre de humedad, para ello debe colocarse una trampa que contenga un agente desecante en su interior (sílica gel)
- Luego colocar los tubos en el equipo Rancimat.
- Ajustar el flujo de aire para cada tubo de tal forma que a todos ellos ingrese un flujo de aire de 20 ml/min.
- Una vez efectuado los ajustes e instalado todas las conexiones pertinentes pulsar la tecla “GO” para dar inicio a la determinación. Verificar que la cinta de papel registre dicho inicio y que monitoree la conductividad de cada sistema a medida que transcurre el tiempo.
- Una vez alcanzado el tiempo de inducción el equipo automáticamente finalizará el proceso de oxidación acelerada. Dicho tiempo será registrado junto con la gráfica conductividad versus tiempo entregada por el equipo.
ANEXO N°6

ANÁLISIS ESTADÍSTICOS REALIZADOS DURANTE ESTE ESTUDIO

- ANÁLISIS DE VARIANCIA Y PRUEBAS NO PARAMÉTRICAS SEGÚN INDIVIDUOS POR CADA DIETA

Dieta I

ACEITE

Resumen Estadístico para Aceite

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>10,194</td>
<td>9,3</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>9,418</td>
<td>8,81</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>9,988</td>
<td>9,54</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>11,042</td>
<td>11,16</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>12,156</td>
<td>11,7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>10,559</td>
<td>9,8</td>
<td></td>
</tr>
</tbody>
</table>

Individuo | Media geométrica | Varianza | Desviación típica | Error estándar |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9,90862</td>
<td>8,65913</td>
<td>2,94264</td>
<td>1,31599</td>
</tr>
<tr>
<td>B</td>
<td>9,18875</td>
<td>6,12777</td>
<td>2,47543</td>
<td>1,10705</td>
</tr>
<tr>
<td>C</td>
<td>9,58384</td>
<td>10,5099</td>
<td>3,24189</td>
<td>1,44982</td>
</tr>
<tr>
<td>D</td>
<td>10,9492</td>
<td>2,67502</td>
<td>1,63555</td>
<td>0,73144</td>
</tr>
<tr>
<td>E</td>
<td>12,0665</td>
<td>2,90843</td>
<td>1,70541</td>
<td>0,762683</td>
</tr>
<tr>
<td>Total</td>
<td>10,2886</td>
<td>6,09355</td>
<td>2,46851</td>
<td>0,493702</td>
</tr>
</tbody>
</table>

Individuo | Mínimo | Máximo | Rango | Primer cuartil |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7,77</td>
<td>15,32</td>
<td>7,55</td>
<td>9,13</td>
</tr>
<tr>
<td>B</td>
<td>7,06</td>
<td>13,6</td>
<td>6,54</td>
<td>8,39</td>
</tr>
<tr>
<td>C</td>
<td>6,57</td>
<td>14,74</td>
<td>8,17</td>
<td>7,65</td>
</tr>
<tr>
<td>D</td>
<td>9,4</td>
<td>13,57</td>
<td>4,17</td>
<td>5,8</td>
</tr>
<tr>
<td>E</td>
<td>10,39</td>
<td>14,99</td>
<td>4,6</td>
<td>11,64</td>
</tr>
<tr>
<td>Total</td>
<td>6,57</td>
<td>15,32</td>
<td>8,75</td>
<td>9,13</td>
</tr>
</tbody>
</table>

Individuo | Segundo cuartil | Rango intercuar. | Asimetría | Asimetría tipi. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9,45</td>
<td>0,32</td>
<td>1,93147</td>
<td>1,76318</td>
</tr>
<tr>
<td>B</td>
<td>9,23</td>
<td>0,84</td>
<td>1,6127</td>
<td>1,47219</td>
</tr>
<tr>
<td>C</td>
<td>11,44</td>
<td>3,79</td>
<td>0,70399</td>
<td>0,642652</td>
</tr>
<tr>
<td>D</td>
<td>11,28</td>
<td>1,48</td>
<td>0,935979</td>
<td>0,85428</td>
</tr>
<tr>
<td>E</td>
<td>12,06</td>
<td>0,42</td>
<td>1,4298</td>
<td>1,30523</td>
</tr>
<tr>
<td>Total</td>
<td>11,7</td>
<td>2,57</td>
<td>0,453761</td>
<td>0,926237</td>
</tr>
</tbody>
</table>

Individuo | Curtosis | Curtosis tipificada | Coef. de variación | Suma |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4,1227</td>
<td>1,88175</td>
<td>28,8664%</td>
<td>50,97</td>
</tr>
<tr>
<td>B</td>
<td>3,25311</td>
<td>1,48484</td>
<td>26,2841%</td>
<td>47,09</td>
</tr>
<tr>
<td>C</td>
<td>-0,295948</td>
<td>-0,135081</td>
<td>32,4579%</td>
<td>49,94</td>
</tr>
<tr>
<td>D</td>
<td>0,820608</td>
<td>0,374555</td>
<td>14,8121%</td>
<td>55,21</td>
</tr>
<tr>
<td>E</td>
<td>2,98638</td>
<td>1,36309</td>
<td>14,0294%</td>
<td>60,78</td>
</tr>
<tr>
<td>Total</td>
<td>-0,58599</td>
<td>-0,598073</td>
<td>23,3769%</td>
<td>263,99</td>
</tr>
</tbody>
</table>

Contraste de Varianza

Contraste C de Cochran: 0,340343 P-valor = 0,667388
Contraste de Bartlett: 1,15675 P-valor = 0,618434
Contraste de Hartley: 3,92889 P-valor = 0,782416

Test de Levene: 0,434048 P-valor = 0,782416
Tabla ANOVA para Aceite según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>22,7242</td>
<td>4</td>
<td>5,68105</td>
<td>0,92</td>
<td>0,4718</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>123,521</td>
<td>20</td>
<td>6,17604</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>146,245</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALFA TOCOFEROL

Resumen Estadístico para Alpha Toc

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>233,458</td>
<td>249,32</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>241,488</td>
<td>238,11</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>210,244</td>
<td>177,46</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>219,342</td>
<td>223,67</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>168,23</td>
<td>169,75</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>214,552</td>
<td>223,67</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>226,808</td>
<td>3054,87</td>
<td>55,2709</td>
<td>24,7179</td>
</tr>
<tr>
<td>B</td>
<td>219,801</td>
<td>14428,4</td>
<td>120,118</td>
<td>53,7185</td>
</tr>
<tr>
<td>C</td>
<td>183,899</td>
<td>14341,5</td>
<td>119,756</td>
<td>53,5564</td>
</tr>
<tr>
<td>D</td>
<td>212,447</td>
<td>3658,39</td>
<td>60,4846</td>
<td>27,0495</td>
</tr>
<tr>
<td>E</td>
<td>163,639</td>
<td>1909,3</td>
<td>43,6955</td>
<td>19,5412</td>
</tr>
<tr>
<td>Total</td>
<td>199,839</td>
<td>6913,36</td>
<td>83,1466</td>
<td>16,6293</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>136,82</td>
<td>275,95</td>
<td>139,13</td>
<td>245,87</td>
</tr>
<tr>
<td>B</td>
<td>131,41</td>
<td>431,31</td>
<td>299,9</td>
<td>145,7</td>
</tr>
<tr>
<td>C</td>
<td>96,04</td>
<td>380,24</td>
<td>284,2</td>
<td>114,82</td>
</tr>
<tr>
<td>D</td>
<td>150,07</td>
<td>289,6</td>
<td>139,53</td>
<td>167,36</td>
</tr>
<tr>
<td>E</td>
<td>119,33</td>
<td>224,25</td>
<td>104,92</td>
<td>131,68</td>
</tr>
<tr>
<td>Total</td>
<td>96,04</td>
<td>431,31</td>
<td>335,27</td>
<td>145,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuart.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>259,33</td>
<td>13,46</td>
<td>-1,98048</td>
<td>-1,80792</td>
</tr>
<tr>
<td>B</td>
<td>260,91</td>
<td>115,21</td>
<td>1,11416</td>
<td>1,0708</td>
</tr>
<tr>
<td>C</td>
<td>228,66</td>
<td>167,84</td>
<td>0,703251</td>
<td>0,641978</td>
</tr>
<tr>
<td>D</td>
<td>266,01</td>
<td>98,65</td>
<td>-0,0458426</td>
<td>-0,0418484</td>
</tr>
<tr>
<td>E</td>
<td>195,96</td>
<td>64,28</td>
<td>0,156696</td>
<td>0,143044</td>
</tr>
<tr>
<td>Total</td>
<td>260,91</td>
<td>115,21</td>
<td>0,798638</td>
<td>1,63021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4,19029</td>
<td>1,9126</td>
<td>23,6749%</td>
<td>1167,29</td>
</tr>
<tr>
<td>B</td>
<td>1,18377</td>
<td>0,540314</td>
<td>49,7409%</td>
<td>1207,44</td>
</tr>
<tr>
<td>C</td>
<td>-1,21261</td>
<td>-0,553477</td>
<td>56,9604%</td>
<td>1051,22</td>
</tr>
<tr>
<td>D</td>
<td>-2,44873</td>
<td>-1,11769</td>
<td>27,5755%</td>
<td>1096,71</td>
</tr>
<tr>
<td>E</td>
<td>-1,84764</td>
<td>-0,843327</td>
<td>25,9737%</td>
<td>841,15</td>
</tr>
<tr>
<td>Total</td>
<td>0,625006</td>
<td>0,637896</td>
<td>38,7535%</td>
<td>5363,81</td>
</tr>
</tbody>
</table>

Contraste de Varianza

- Contraste de Cochran: 0,385864 P-valor = 0,413506
- Contraste de Bartlett: 1,39579 P-valor = 0,1945
- Contraste de Hartley: 7,5569 P-valor = 0,298578
Tabla ANOVA para Alpha Toc según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuadr.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>16351,1</td>
<td>4</td>
<td>4087,77</td>
<td>0,55</td>
<td>0,7035</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>149570,0</td>
<td>20</td>
<td>7478,48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>165921,0</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BETA TOCOFEROL

Resumen Estadístico para Beta Toc

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>3,306</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>0,584</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>0,778</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>54,6482</td>
<td>7,39244</td>
<td>3,306</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1,70528</td>
<td>1,30586</td>
<td>0,584</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11,1098</td>
<td>3,33314</td>
<td>0,666627</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>C</td>
<td>0,0</td>
<td>16,53</td>
<td>16,53</td>
<td>0,0</td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>2,92</td>
<td>2,92</td>
<td>0,0</td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>0,0</td>
<td>16,53</td>
<td>16,53</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría típica</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>2,23607</td>
<td>2,04124</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>2,23607</td>
<td>2,04124</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0,0</td>
<td>4,779</td>
<td>9,7551</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5,0</td>
<td>2,28218</td>
<td>223,607%</td>
<td>16,53</td>
</tr>
<tr>
<td>D</td>
<td>5,0</td>
<td>2,28218</td>
<td>223,607%</td>
<td>2,92</td>
</tr>
<tr>
<td>E</td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23,296</td>
<td>23,7763</td>
<td>428,424%</td>
<td>19,45</td>
</tr>
</tbody>
</table>

Contraste de Varianza

Contraste C de Cochran: 0,96974 P-valor = 0,00538332
Contraste de Bartlett: 2,9188 P-valor = 0,0057798
Contraste de Hartley: 32,0465
Test de Levene: 0,914348 P-valor = 0,474774
Contraste de Kruskal-Wallis para Beta Toc según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>12,0</td>
<td>12,0</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>12,0</td>
<td>12,0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>14,6</td>
<td>14,4</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>14,4</td>
<td>12,0</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>12,0</td>
<td></td>
</tr>
</tbody>
</table>

Estadístico = 3,13333 P-valor = 0,535766

GAMMA TOCOFEROL

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>10,312</td>
<td>10,81</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>10,79</td>
<td>7,75</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>12,074</td>
<td>10,62</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>10,42</td>
<td>8,71</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>5,816</td>
<td>6,11</td>
<td></td>
</tr>
</tbody>
</table>

Total 25 9,8824 7,59

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8,98016</td>
<td>30,3051</td>
<td>5,505</td>
<td>2,46191</td>
</tr>
<tr>
<td>B</td>
<td>9,81746</td>
<td>29,7015</td>
<td>5,4499</td>
<td>2,43727</td>
</tr>
<tr>
<td>C</td>
<td>9,76082</td>
<td>73,0643</td>
<td>8,54777</td>
<td>3,92268</td>
</tr>
<tr>
<td>D</td>
<td>8,91588</td>
<td>42,5254</td>
<td>6,52115</td>
<td>2,91635</td>
</tr>
<tr>
<td>E</td>
<td>5,75104</td>
<td>0,82448</td>
<td>0,90809</td>
<td>0,406074</td>
</tr>
</tbody>
</table>

Total 8,49056 34,1193 5,84117 1,16823

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,41</td>
<td>18,32</td>
<td>14,91</td>
<td>7,52</td>
</tr>
<tr>
<td>B</td>
<td>6,02</td>
<td>19,12</td>
<td>13,1</td>
<td>7,59</td>
</tr>
<tr>
<td>C</td>
<td>3,6</td>
<td>25,53</td>
<td>21,93</td>
<td>6,37</td>
</tr>
<tr>
<td>D</td>
<td>3,99</td>
<td>20,67</td>
<td>16,68</td>
<td>6,32</td>
</tr>
<tr>
<td>E</td>
<td>4,25</td>
<td>6,47</td>
<td>2,22</td>
<td>5,86</td>
</tr>
</tbody>
</table>

Total 3,41 25,53 22,12 6,11

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuart.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11,5</td>
<td>3,98</td>
<td>0,101366</td>
<td>0,0054</td>
</tr>
<tr>
<td>B</td>
<td>13,47</td>
<td>5,88</td>
<td>1,0051</td>
<td>1,04622</td>
</tr>
<tr>
<td>C</td>
<td>14,25</td>
<td>7,88</td>
<td>1,1937</td>
<td>1,02184</td>
</tr>
<tr>
<td>D</td>
<td>12,41</td>
<td>6,09</td>
<td>1,8623</td>
<td>-1,70004</td>
</tr>
<tr>
<td>E</td>
<td>6,39</td>
<td>0,53</td>
<td>-1,8623</td>
<td>-1,70004</td>
</tr>
</tbody>
</table>

Total 12,41 6,3 1,21363 2,47731

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,771489</td>
<td>0,352135</td>
<td>53,384%</td>
<td>51,56</td>
</tr>
<tr>
<td>B</td>
<td>-0,101399</td>
<td>-0,0462823</td>
<td>50,508%</td>
<td>53,95</td>
</tr>
<tr>
<td>C</td>
<td>1,13807</td>
<td>0,519453</td>
<td>70,794%</td>
<td>60,37</td>
</tr>
<tr>
<td>D</td>
<td>1,02336</td>
<td>0,467096</td>
<td>62,583%</td>
<td>52,1</td>
</tr>
<tr>
<td>E</td>
<td>3,60879</td>
<td>1,64718</td>
<td>15,6123%</td>
<td>29,08</td>
</tr>
</tbody>
</table>

Total 0,875277 0,893326 59,1068% 247,06

Contraste de Varianza

Contraste C de Cochran: 0,414148 P-valor = 0,299275
Contraste de Bartlett: 1,88371 P-valor = 0,0213604
Contraste de Hartley: 88,6187 P-valor = 0,375203

86
Contraste de Kruskal-Wallis para Gamma Toc según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>14,0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>15,2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>14,6</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>13,8</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>7,4</td>
<td></td>
</tr>
</tbody>
</table>

- **Estadístico = 3,72923**
- **P-valor = 0,443889**

DELTA TOCOFEROL

Resumen Estadístico para Delta Toc

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>3,256</td>
<td>0,22</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>3,402</td>
<td>3,02</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>3,378</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>0,596</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

- **Total = 25**
- **Media geométrica** = 2,1264
- **Varianza** = 0,0
- **Desviación típica** = 0,0
- **Error estándar** = 0,0

Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28,9911</td>
<td>5,38434</td>
<td>2,40795</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>9,49392</td>
<td>3,08122</td>
<td>1,37796</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>51,543</td>
<td>7,17935</td>
<td>3,2107</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1,77608</td>
<td>1,3327</td>
<td>0,596</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
</tbody>
</table>

- **Total = 17,6618**
- **Media geométrica** = 4,20259
- **Varianza** = 0,840519
- **Desviación típica** = 4,90643

Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>12,5</td>
<td>12,5</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>7,19</td>
<td>7,19</td>
<td>0,96</td>
</tr>
<tr>
<td>C</td>
<td>0,0</td>
<td>16,21</td>
<td>16,21</td>
<td>0,0</td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>2,98</td>
<td>2,98</td>
<td>0,0</td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

- **Total = 0,0**
- **Mínimo** = 0,0
- **Máximo** = 16,21
- **Rango** = 16,21
- **Primer cuartil** = 0,0

Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipí.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,56</td>
<td>3,56</td>
<td>1,84959</td>
<td>1,68844</td>
</tr>
<tr>
<td>B</td>
<td>5,84</td>
<td>4,88</td>
<td>0,211564</td>
<td>0,19313</td>
</tr>
<tr>
<td>C</td>
<td>0,68</td>
<td>0,68</td>
<td>2,2268</td>
<td>2,03278</td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>0,0</td>
<td>2,23607</td>
<td>2,04124</td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
</tbody>
</table>

- **Total = 2,98**
- **Segundo cuartil** = 2,98
- **Rango intercuar.** = 4,90643

Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,32045</td>
<td>1,51557</td>
<td>165,376%</td>
<td>16,28</td>
</tr>
<tr>
<td>B</td>
<td>-2,30361</td>
<td>-1,05145</td>
<td>90,5709%</td>
<td>17,01</td>
</tr>
<tr>
<td>C</td>
<td>4,9657</td>
<td>2,26552</td>
<td>212,532%</td>
<td>16,89</td>
</tr>
<tr>
<td>D</td>
<td>5,0</td>
<td>2,28218</td>
<td>223,607%</td>
<td>2,98</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>0,0</td>
<td></td>
</tr>
</tbody>
</table>

- **Total = 5,52481**
- **Curtosis** = 5,63874
- **Curtosis tipificada** = 197,639%
- **Suma** = 53,16

Contraste de Varianza

- **Contraste C de Cochran:** 0,561446
- **P-valor = 0,124322**
- **Contraste de Bartlett:** 1,82166
- **P-valor = 0,0336983**
- **Contraste de Hartley:** 29,0207
- **P-valor = 0,000000**
- **Test de Levene:** 0,710931
- **P-valor = 0,594046**
Contraste de Kruskal-Wallis para Delta Toc según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>15,4</td>
<td>1,54369</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>18,2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>13,2</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>10,2</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>8,0</td>
<td></td>
</tr>
</tbody>
</table>

Estadístico = 7,72706 P-valor = 0.102104

ÍNDICE PERÓXIDOS

Resumen Estadístico para Índice Peróxidos

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>6,442</td>
<td>7,17</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>6,698</td>
<td>8,35</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>6,348</td>
<td>6,91</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>7,204</td>
<td>8,14</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>7,292</td>
<td>7,89</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>6,796</td>
<td>7,89</td>
<td>0,65657</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5,58792</td>
<td>11,9149</td>
<td>3,45179</td>
<td>1,54369</td>
</tr>
<tr>
<td>B</td>
<td>5,41489</td>
<td>16,7697</td>
<td>4,09508</td>
<td>1,83138</td>
</tr>
<tr>
<td>C</td>
<td>5,33047</td>
<td>13,121</td>
<td>3,62229</td>
<td>1,61994</td>
</tr>
<tr>
<td>D</td>
<td>6,66827</td>
<td>8,53513</td>
<td>2,92149</td>
<td>1,30653</td>
</tr>
<tr>
<td>E</td>
<td>6,45864</td>
<td>10,3842</td>
<td>3,65844</td>
<td>1,6361</td>
</tr>
<tr>
<td>Total</td>
<td>5,86613</td>
<td>10,7767</td>
<td>3,28278</td>
<td>0,66656</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,37</td>
<td>10,79</td>
<td>8,42</td>
<td>3,58</td>
</tr>
<tr>
<td>B</td>
<td>2,28</td>
<td>10,54</td>
<td>8,26</td>
<td>2,32</td>
</tr>
<tr>
<td>C</td>
<td>1,99</td>
<td>9,98</td>
<td>7,99</td>
<td>3,27</td>
</tr>
<tr>
<td>D</td>
<td>3,78</td>
<td>9,86</td>
<td>6,08</td>
<td>4,43</td>
</tr>
<tr>
<td>E</td>
<td>3,44</td>
<td>10,86</td>
<td>7,42</td>
<td>3,56</td>
</tr>
<tr>
<td>Total</td>
<td>1,99</td>
<td>10,86</td>
<td>8,87</td>
<td>3,56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría típica</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8,3</td>
<td>4,72</td>
<td>-0,0198772</td>
<td>-0,0181453</td>
</tr>
<tr>
<td>B</td>
<td>10,0</td>
<td>7,68</td>
<td>-0,442456</td>
<td>-0,403905</td>
</tr>
<tr>
<td>C</td>
<td>9,59</td>
<td>6,32</td>
<td>-0,260942</td>
<td>-0,238207</td>
</tr>
<tr>
<td>D</td>
<td>9,81</td>
<td>5,38</td>
<td>-0,404948</td>
<td>-0,369665</td>
</tr>
<tr>
<td>E</td>
<td>10,71</td>
<td>7,15</td>
<td>-0,209534</td>
<td>-0,183061</td>
</tr>
<tr>
<td>Total</td>
<td>9,86</td>
<td>6,3</td>
<td>-0,220476</td>
<td>-0,450045</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1,73407</td>
<td>-0,79149</td>
<td>53,5826%</td>
<td>32,21</td>
</tr>
<tr>
<td>B</td>
<td>-3,1437</td>
<td>-1,4349</td>
<td>61,1389%</td>
<td>33,49</td>
</tr>
<tr>
<td>C</td>
<td>-2,6631</td>
<td>-1,21553</td>
<td>57,0624%</td>
<td>31,74</td>
</tr>
<tr>
<td>D</td>
<td>-2,96706</td>
<td>-1,35427</td>
<td>40,5538%</td>
<td>36,02</td>
</tr>
<tr>
<td>E</td>
<td>-3,02591</td>
<td>-1,38113</td>
<td>50,1706%</td>
<td>36,46</td>
</tr>
<tr>
<td>Total</td>
<td>-1,68164</td>
<td>-1,71631</td>
<td>48,299%</td>
<td>169,92</td>
</tr>
</tbody>
</table>

Contraste de Varianza

Contraste C de Cochran: 0,263158 P-valor = 1,0
Contraste de Bartlett: 1,02344 P-valor = 0,980699
Contraste de Hartley: 1,96479
Test de Levene: 0,134761 P-valor = 0,967635
Tabla ANOVA para Índice Peróxidos según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>3,7405</td>
<td>4</td>
<td>0,935126</td>
<td>0,07</td>
<td>0,9895</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>254,9</td>
<td>20</td>
<td>12,745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>258,64</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VALOR p-ANISIDINA

Resumen Estadístico para p Anisidina

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>4,238</td>
<td>3,63</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>4,012</td>
<td>3,14</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>4,25</td>
<td>3,68</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>4,364</td>
<td>4,15</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>4,296</td>
<td>4,31</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>4,232</td>
<td>3,68</td>
<td>2,99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,90751</td>
<td>4,12657</td>
<td>2,0314</td>
<td>0,908468</td>
</tr>
<tr>
<td>B</td>
<td>3,76318</td>
<td>2,57137</td>
<td>1,60355</td>
<td>0,717129</td>
</tr>
<tr>
<td>C</td>
<td>3,84707</td>
<td>4,74695</td>
<td>2,17875</td>
<td>0,974366</td>
</tr>
<tr>
<td>D</td>
<td>4,15895</td>
<td>2,60308</td>
<td>1,61341</td>
<td>0,721537</td>
</tr>
<tr>
<td>E</td>
<td>4,04747</td>
<td>2,89678</td>
<td>1,70199</td>
<td>0,761154</td>
</tr>
<tr>
<td>Total</td>
<td>3,94231</td>
<td>2,83877</td>
<td>1,68486</td>
<td>0,336973</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,38</td>
<td>7,6</td>
<td>5,22</td>
<td>3,09</td>
</tr>
<tr>
<td>B</td>
<td>2,4</td>
<td>5,81</td>
<td>3,41</td>
<td>3,04</td>
</tr>
<tr>
<td>C</td>
<td>2,03</td>
<td>7,75</td>
<td>5,72</td>
<td>3,11</td>
</tr>
<tr>
<td>D</td>
<td>2,99</td>
<td>7,05</td>
<td>4,06</td>
<td>3,24</td>
</tr>
<tr>
<td>E</td>
<td>2,65</td>
<td>6,96</td>
<td>4,31</td>
<td>2,99</td>
</tr>
<tr>
<td>Total</td>
<td>2,03</td>
<td>7,75</td>
<td>5,72</td>
<td>3,04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4,49</td>
<td>1,4</td>
<td>1,48466</td>
<td>1,65512</td>
</tr>
<tr>
<td>B</td>
<td>5,67</td>
<td>2,63</td>
<td>0,464849</td>
<td>0,424347</td>
</tr>
<tr>
<td>C</td>
<td>4,68</td>
<td>1,57</td>
<td>1,22258</td>
<td>1,11606</td>
</tr>
<tr>
<td>D</td>
<td>4,39</td>
<td>1,15</td>
<td>1,52334</td>
<td>1,39061</td>
</tr>
<tr>
<td>E</td>
<td>4,57</td>
<td>1,58</td>
<td>1,03439</td>
<td>0,844262</td>
</tr>
<tr>
<td>Total</td>
<td>4,68</td>
<td>1,64</td>
<td>0,882968</td>
<td>1,80235</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,3909</td>
<td>1,09129</td>
<td>47,9329%</td>
<td>21,19</td>
</tr>
<tr>
<td>B</td>
<td>-3,04097</td>
<td>-1,38801</td>
<td>39,9668%</td>
<td>20,06</td>
</tr>
<tr>
<td>C</td>
<td>1,77323</td>
<td>0,809365</td>
<td>51,2687%</td>
<td>21,25</td>
</tr>
<tr>
<td>D</td>
<td>2,55425</td>
<td>1,16585</td>
<td>36,9708%</td>
<td>21,82</td>
</tr>
<tr>
<td>E</td>
<td>1,03032</td>
<td>0,470275</td>
<td>39,6181%</td>
<td>21,48</td>
</tr>
<tr>
<td>Total</td>
<td>-0,251436</td>
<td>-0,25662</td>
<td>39,8125%</td>
<td>105,8</td>
</tr>
</tbody>
</table>

Contraste de Varianza

Contraste C de Cochran: 0,280143 P-valor = 1,0
Contraste de Bartlett: 1,03312 P-valor = 0,963901
Contraste de Hartley: 1,84608
Test de Levene: 0,0688683 P-valor = 0,990847
Tabla ANOVA para p Anisidina según Individuo

Análisis de la Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-(F)</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,3514</td>
<td>4</td>
<td>0,08785</td>
<td>0,03</td>
<td>0,9986</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>67,779</td>
<td>20</td>
<td>3,38895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>68,1304</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NBVT

Resumen Estadístico para NBVT

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>10,38</td>
<td>10,8</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>8,6</td>
<td>8,6</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>7,76</td>
<td>8,3</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>8,36</td>
<td>8,1</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>7,92</td>
<td>7,2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>8,604</td>
<td>8,3</td>
<td>6,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10,2488</td>
<td>3,102</td>
<td>1,76125</td>
<td>0,787655</td>
</tr>
<tr>
<td>B</td>
<td>8,42372</td>
<td>3,885</td>
<td>1,97104</td>
<td>0,881476</td>
</tr>
<tr>
<td>C</td>
<td>7,57404</td>
<td>3,073</td>
<td>1,753</td>
<td>0,783964</td>
</tr>
<tr>
<td>D</td>
<td>8,21405</td>
<td>3,158</td>
<td>1,77708</td>
<td>0,794733</td>
</tr>
<tr>
<td>E</td>
<td>7,75964</td>
<td>3,657</td>
<td>1,91233</td>
<td>0,855219</td>
</tr>
<tr>
<td>Total</td>
<td>8,39422</td>
<td>3,7279</td>
<td>1,93078</td>
<td>0,386155</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7,6</td>
<td>12,3</td>
<td>4,7</td>
<td>10,0</td>
</tr>
<tr>
<td>B</td>
<td>6,6</td>
<td>11,4</td>
<td>4,8</td>
<td>6,9</td>
</tr>
<tr>
<td>C</td>
<td>4,9</td>
<td>9,6</td>
<td>4,7</td>
<td>7,6</td>
</tr>
<tr>
<td>D</td>
<td>6,6</td>
<td>10,9</td>
<td>4,3</td>
<td>6,9</td>
</tr>
<tr>
<td>E</td>
<td>6,4</td>
<td>11,2</td>
<td>4,8</td>
<td>6,9</td>
</tr>
<tr>
<td>Total</td>
<td>4,9</td>
<td>12,3</td>
<td>7,4</td>
<td>6,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11,2</td>
<td>1,2</td>
<td>-1,05524</td>
<td>-0,963299</td>
</tr>
<tr>
<td>B</td>
<td>9,5</td>
<td>2,6</td>
<td>0,531506</td>
<td>0,485196</td>
</tr>
<tr>
<td>C</td>
<td>8,4</td>
<td>0,8</td>
<td>-1,29546</td>
<td>-1,18259</td>
</tr>
<tr>
<td>D</td>
<td>9,3</td>
<td>2,4</td>
<td>0,641197</td>
<td>0,58833</td>
</tr>
<tr>
<td>E</td>
<td>9,9</td>
<td>1,0</td>
<td>1,80774</td>
<td>1,65023</td>
</tr>
<tr>
<td>Total</td>
<td>10,0</td>
<td>3,1</td>
<td>0,232985</td>
<td>0,475578</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,58983</td>
<td>0,725656</td>
<td>16,9677%</td>
<td>51,9</td>
</tr>
<tr>
<td>B</td>
<td>-0,83836</td>
<td>-0,382657</td>
<td>22,9191%</td>
<td>43,0</td>
</tr>
<tr>
<td>C</td>
<td>2,40703</td>
<td>1,09865</td>
<td>22,5502%</td>
<td>38,8</td>
</tr>
<tr>
<td>D</td>
<td>-0,912425</td>
<td>-0,416463</td>
<td>21,2569%</td>
<td>41,8</td>
</tr>
<tr>
<td>E</td>
<td>3,44343</td>
<td>1,5717</td>
<td>24,1456%</td>
<td>39,6</td>
</tr>
<tr>
<td>Total</td>
<td>-0,831184</td>
<td>-0,848324</td>
<td>22,4405%</td>
<td>215,1</td>
</tr>
</tbody>
</table>

Contraste de Varianza

- Contraste C de Cochran: 0,230222 P-valor = 1,0
- Contraste de Bartlett: 1,00473 P-valor = 0,999108
- Contraste de Hartley: 1,26424
- Test de Levene: 0,0728701 P-valor = 0,989588
Tabla ANOVA para NBVT según Individuo

Análisis de la Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>21,9696</td>
<td>4</td>
<td>5,4924</td>
<td>1,63</td>
<td>0,2064</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>67,5</td>
<td>20</td>
<td>3,375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>89,4696</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DMA

Resumen Estadístico para DMA

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>0,226</td>
<td>0,15</td>
<td>0,15</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>0,132</td>
<td>0,14</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>0,52</td>
<td>0,64</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>0,25</td>
<td>0,12</td>
<td>0,12</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>0,198</td>
<td>0,14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,03563</td>
<td>0,188759</td>
<td>0,084815</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0,00567</td>
<td>0,0752994</td>
<td>0,0336749</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,13555</td>
<td>0,368171</td>
<td>0,164651</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0,0516</td>
<td>0,227156</td>
<td>0,101057</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0,03622</td>
<td>0,190316</td>
<td>0,0851117</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>0,48</td>
<td>0,48</td>
<td>0,15</td>
</tr>
<tr>
<td>B</td>
<td>0,02</td>
<td>0,23</td>
<td>0,21</td>
<td>0,12</td>
</tr>
<tr>
<td>C</td>
<td>0,14</td>
<td>0,99</td>
<td>0,85</td>
<td>0,15</td>
</tr>
<tr>
<td>D</td>
<td>0,04</td>
<td>0,58</td>
<td>0,54</td>
<td>0,12</td>
</tr>
<tr>
<td>E</td>
<td>0,02</td>
<td>0,52</td>
<td>0,5</td>
<td>0,12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,35</td>
<td>0,2</td>
<td>0,363825</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0,15</td>
<td>0,03</td>
<td>-0,440806</td>
<td>-0,409025</td>
</tr>
<tr>
<td>C</td>
<td>0,68</td>
<td>0,53</td>
<td>0,034415</td>
<td>0,0314164</td>
</tr>
<tr>
<td>D</td>
<td>0,39</td>
<td>0,27</td>
<td>0,889622</td>
<td>0,81111</td>
</tr>
<tr>
<td>E</td>
<td>0,19</td>
<td>0,07</td>
<td>1,63665</td>
<td>1,49405</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1,03443</td>
<td>-0,47215</td>
<td>83,5217%</td>
<td>1,13</td>
</tr>
<tr>
<td>B</td>
<td>1,70945</td>
<td>0,780254</td>
<td>57,045%</td>
<td>0,66</td>
</tr>
<tr>
<td>C</td>
<td>-1,92801</td>
<td>-0,88001</td>
<td>70,8021%</td>
<td>2,6</td>
</tr>
<tr>
<td>D</td>
<td>-1,07086</td>
<td>-0,488779</td>
<td>90,8625%</td>
<td>1,25</td>
</tr>
<tr>
<td>E</td>
<td>3,2458</td>
<td>1,4815</td>
<td>96,119%</td>
<td>0,99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Contraste de Varianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,49227</td>
</tr>
<tr>
<td>B</td>
<td>1,52304</td>
</tr>
<tr>
<td>C</td>
<td>94,376</td>
</tr>
</tbody>
</table>

Contraste de Varianza

- Contraste C de Cochran: 0,512147 P-valor = 0,081773
- Contraste de Bartlett: 1,52025 P-valor = 0,106705
- Contraste de Hartley: 23,9065
- Test de Levene: 1,20134 P-valor = 0,341023
Contraste de Kruskal-Wallis para DMA según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>13,2</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>9,9</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>19,1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>11,6</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>11,2</td>
<td></td>
</tr>
</tbody>
</table>

Estadístico = 4,85219 P-valor = 0,302802

HCHO

Resumen Estadístico para HCHO

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>0,452</td>
<td>0,59</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>0,45</td>
<td>0,66</td>
<td>0,66</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>0,378</td>
<td>0,32</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>0,506</td>
<td>0,63</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>0,52</td>
<td>0,66</td>
<td></td>
</tr>
</tbody>
</table>

Total | 25 | 0,4612 | 0,61 | 0,0 |

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,11207</td>
<td>0,334769</td>
<td>0,149713</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0,1193</td>
<td>0,345398</td>
<td>0,154467</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,09167</td>
<td>0,302771</td>
<td>0,135403</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0,14588</td>
<td>0,342856</td>
<td>0,15333</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0,11755</td>
<td>0,342856</td>
<td>0,15333</td>
<td></td>
</tr>
</tbody>
</table>

Total | 0,100369 | 0,316811 | 0,063622 |

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>0,83</td>
<td>0,83</td>
<td>0,22</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>0,77</td>
<td>0,77</td>
<td>0,16</td>
</tr>
<tr>
<td>C</td>
<td>0,0</td>
<td>0,75</td>
<td>0,75</td>
<td>0,21</td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>0,9</td>
<td>0,9</td>
<td>0,22</td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,35</td>
</tr>
</tbody>
</table>

Total | 0,0 | 0,9 | 0,9 | 0,21 |

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuart.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,62</td>
<td>-0,64942</td>
<td>-0,40536</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0,66</td>
<td>-0,64942</td>
<td>-0,40536</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,61</td>
<td>0,0753487</td>
<td>0,0687836</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0,78</td>
<td>-0,518293</td>
<td>-0,473134</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0,79</td>
<td>-1,04565</td>
<td>-0,954543</td>
<td></td>
</tr>
</tbody>
</table>

Total | 0,75 | 0,54 | -0,331993 | -0,677677 |

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1,41024</td>
<td>-0,643683</td>
<td>74,0638%</td>
<td>2,26</td>
</tr>
<tr>
<td>B</td>
<td>-2,5148</td>
<td>-1,14784</td>
<td>76,7552%</td>
<td>2,25</td>
</tr>
<tr>
<td>C</td>
<td>-1,56347</td>
<td>-0,713625</td>
<td>80,0986%</td>
<td>1,89</td>
</tr>
<tr>
<td>D</td>
<td>-1,99604</td>
<td>-0,911064</td>
<td>75,4827%</td>
<td>2,53</td>
</tr>
<tr>
<td>E</td>
<td>-0,238703</td>
<td>-0,108952</td>
<td>65,9338%</td>
<td>2,6</td>
</tr>
</tbody>
</table>

Total | -1,50514| -1,53618 | 68,6928% | 11,53 |

Contraste de Varianza

Contraste C de Cochran: 0,248742 P-valor = 1,0
Contraste de Bartlett: 1,01102 P-valor = 0,995352
Contraste de Hartley: 1,59136 P-valor = 0,996184
Tabla ANOVA para HCHO según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,062984</td>
<td>4</td>
<td>0,015746</td>
<td>0,13</td>
<td>0,9679</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>2,34588</td>
<td>20</td>
<td>0,117294</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total (Corr.) 2,40886 24

pH

Resumen Estadístico para pH

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>6,242</td>
<td>6,22</td>
<td>6,12</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>6,232</td>
<td>6,23</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>6,256</td>
<td>6,28</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>6,19</td>
<td>6,15</td>
<td>6,14</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>6,206</td>
<td>6,19</td>
<td>6,09</td>
</tr>
</tbody>
</table>

Total 25 6,2252 6,22 6,14

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,24093</td>
<td>0,01672</td>
<td>0,129306</td>
<td>0,0578273</td>
</tr>
<tr>
<td>B</td>
<td>6,23163</td>
<td>0,00577</td>
<td>0,0759605</td>
<td>0,0397066</td>
</tr>
<tr>
<td>C</td>
<td>6,25541</td>
<td>0,00918</td>
<td>0,0958123</td>
<td>0,0428486</td>
</tr>
<tr>
<td>D</td>
<td>6,18942</td>
<td>0,0091</td>
<td>0,0953939</td>
<td>0,0426615</td>
</tr>
<tr>
<td>E</td>
<td>6,20469</td>
<td>0,02053</td>
<td>0,143283</td>
<td>0,0640781</td>
</tr>
</tbody>
</table>

Total 6,22437 0,0108177 0,104008 0,0208016

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,12</td>
<td>6,4</td>
<td>0,28</td>
<td>6,12</td>
</tr>
<tr>
<td>B</td>
<td>6,14</td>
<td>6,33</td>
<td>0,19</td>
<td>6,18</td>
</tr>
<tr>
<td>C</td>
<td>6,11</td>
<td>6,37</td>
<td>0,26</td>
<td>6,23</td>
</tr>
<tr>
<td>D</td>
<td>6,14</td>
<td>6,36</td>
<td>0,22</td>
<td>6,14</td>
</tr>
<tr>
<td>E</td>
<td>6,09</td>
<td>6,44</td>
<td>0,35</td>
<td>6,09</td>
</tr>
</tbody>
</table>

Total 6,09 6,44 0,35 6,14

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,35</td>
<td>0,23</td>
<td>0,300972</td>
<td>0,27439</td>
</tr>
<tr>
<td>B</td>
<td>6,28</td>
<td>0,1</td>
<td>0,125943</td>
<td>0,11497</td>
</tr>
<tr>
<td>C</td>
<td>6,29</td>
<td>0,06</td>
<td>-0,755608</td>
<td>-0,689772</td>
</tr>
<tr>
<td>D</td>
<td>6,16</td>
<td>0,02</td>
<td>2,19449</td>
<td>2,00328</td>
</tr>
<tr>
<td>E</td>
<td>6,42</td>
<td>0,13</td>
<td>1,37252</td>
<td>1,25293</td>
</tr>
</tbody>
</table>

Total 6,29 0,15 0,52085 1,06318

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2,62299</td>
<td>-1,19722</td>
<td>2,07155%</td>
<td>31,21</td>
</tr>
<tr>
<td>B</td>
<td>-1,37336</td>
<td>-0,626848</td>
<td>1,21888%</td>
<td>31,16</td>
</tr>
<tr>
<td>C</td>
<td>1,27636</td>
<td>0,582576</td>
<td>1,53153%</td>
<td>31,28</td>
</tr>
<tr>
<td>D</td>
<td>4,84688</td>
<td>2,21229</td>
<td>1,5411%</td>
<td>30,95</td>
</tr>
<tr>
<td>E</td>
<td>1,9662</td>
<td>0,897445</td>
<td>2,30878%</td>
<td>31,03</td>
</tr>
</tbody>
</table>

Total -0,883712 -0,901935 1,67076% 155,63

Contraste de Varianza

Contraste C de Cochran: 0,33491 P-valor = 0,704328
Contraste de Bartlett: 1,10855 P-valor = 0,758991
Contraste de Hartley: 3,55806
Test de Levene: 0,509213 P-valor = 0,729584
Tabla ANOVA para pH según Individuo

Análisis de la Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,014424</td>
<td>4</td>
<td>0,003606</td>
<td>0,29</td>
<td>0,8783</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>0,2452</td>
<td>20</td>
<td>0,01226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>0,259624</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ÁCIDO GRASO C16:0

Resumen Estadístico para C 16:0

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>20,8</td>
<td>20,51</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>19,664</td>
<td>19,55</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>20,022</td>
<td>19,91</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>20,578</td>
<td>20,99</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>20,70</td>
<td>21,38</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>20,7708</td>
<td>20,14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20,7378</td>
<td>3,35515</td>
<td>1,83171</td>
<td>0,819164</td>
</tr>
<tr>
<td>B</td>
<td>19,607</td>
<td>2,83088</td>
<td>1,68252</td>
<td>0,75247</td>
</tr>
<tr>
<td>C</td>
<td>19,8951</td>
<td>6,31397</td>
<td>2,51276</td>
<td>1,12374</td>
</tr>
<tr>
<td>D</td>
<td>20,5038</td>
<td>3,82447</td>
<td>1,95563</td>
<td>0,874582</td>
</tr>
<tr>
<td>E</td>
<td>22,5534</td>
<td>14,6278</td>
<td>3,82463</td>
<td>1,71043</td>
</tr>
<tr>
<td>Total</td>
<td>20,6345</td>
<td>6,38807</td>
<td>2,52746</td>
<td>0,505492</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>18,78</td>
<td>23,78</td>
<td>5,0</td>
<td>20,19</td>
</tr>
<tr>
<td>B</td>
<td>17,45</td>
<td>22,19</td>
<td>4,74</td>
<td>19,5</td>
</tr>
<tr>
<td>C</td>
<td>16,54</td>
<td>23,64</td>
<td>7,1</td>
<td>19,89</td>
</tr>
<tr>
<td>D</td>
<td>18,28</td>
<td>23,19</td>
<td>4,91</td>
<td>19,04</td>
</tr>
<tr>
<td>E</td>
<td>19,69</td>
<td>29,04</td>
<td>9,35</td>
<td>19,14</td>
</tr>
<tr>
<td>Total</td>
<td>16,54</td>
<td>29,04</td>
<td>12,5</td>
<td>19,55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20,74</td>
<td>0,55</td>
<td>1,21831</td>
<td>1,11216</td>
</tr>
<tr>
<td>B</td>
<td>19,63</td>
<td>0,13</td>
<td>0,460062</td>
<td>0,419977</td>
</tr>
<tr>
<td>C</td>
<td>20,13</td>
<td>0,24</td>
<td>0,134989</td>
<td>0,123228</td>
</tr>
<tr>
<td>D</td>
<td>21,39</td>
<td>2,35</td>
<td>0,147768</td>
<td>0,134894</td>
</tr>
<tr>
<td>E</td>
<td>19,89</td>
<td>3,56</td>
<td>1,44254</td>
<td>1,31685</td>
</tr>
<tr>
<td>Total</td>
<td>21,39</td>
<td>1,84</td>
<td>1,42889</td>
<td>2,91671</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,62188</td>
<td>1,19672</td>
<td>8,80628%</td>
<td>104,0</td>
</tr>
<tr>
<td>B</td>
<td>2,09834</td>
<td>0,957757</td>
<td>8,55636%</td>
<td>98,32</td>
</tr>
<tr>
<td>C</td>
<td>1,9817</td>
<td>0,904516</td>
<td>12,55%</td>
<td>100,11</td>
</tr>
<tr>
<td>D</td>
<td>-1,12101</td>
<td>-0,511667</td>
<td>9,50348%</td>
<td>102,89</td>
</tr>
<tr>
<td>E</td>
<td>1,76869</td>
<td>0,807292</td>
<td>16,7821%</td>
<td>113,95</td>
</tr>
<tr>
<td>Total</td>
<td>3,73657</td>
<td>3,81362</td>
<td>12,1683%</td>
<td>519,27</td>
</tr>
</tbody>
</table>

Contraste de Varianza

Contraste C de Cochran: 0,472592 P-valor = 0,143099
Contraste de Bartlett: 1,22063 P-valor = 0,459142
Contraste de Hartley: 5,16723
Test de Levene: 0,57526 P-valor = 0,683804
Contraste de Kruskal-Wallis para C 16:0 según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>14,6</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>8,6</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>11,2</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>13,0</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>17,6</td>
<td></td>
</tr>
</tbody>
</table>

Estadístico = 4,27569 P-valor = 0,369979

EPA

Resumen Estadístico para EPA

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>9,662</td>
<td>9,21</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>8,748</td>
<td>8,19</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>8,65</td>
<td>8,97</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>9,81</td>
<td>9,33</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>10,966</td>
<td>10,07</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9,54039</td>
<td>3,1247</td>
<td>1,7675</td>
<td>0,790452</td>
</tr>
<tr>
<td>B</td>
<td>8,69873</td>
<td>1,12102</td>
<td>1,05878</td>
<td>0,473502</td>
</tr>
<tr>
<td>C</td>
<td>8,59604</td>
<td>1,15155</td>
<td>1,0731</td>
<td>0,479906</td>
</tr>
<tr>
<td>D</td>
<td>9,60367</td>
<td>5,7025</td>
<td>2,38799</td>
<td>1,06794</td>
</tr>
<tr>
<td>E</td>
<td>9,7513</td>
<td>7,16</td>
<td>2,51051</td>
<td>1,12727</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7,81</td>
<td>12,46</td>
<td>4,65</td>
<td>8,74</td>
</tr>
<tr>
<td>B</td>
<td>7,87</td>
<td>10,29</td>
<td>2,42</td>
<td>7,99</td>
</tr>
<tr>
<td>C</td>
<td>7,36</td>
<td>9,96</td>
<td>2,6</td>
<td>7,75</td>
</tr>
<tr>
<td>D</td>
<td>7,66</td>
<td>13,82</td>
<td>6,16</td>
<td>8,44</td>
</tr>
<tr>
<td>E</td>
<td>8,85</td>
<td>14,75</td>
<td>5,9</td>
<td>8,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10,09</td>
<td>1,35</td>
<td>1,1134</td>
<td>1,01639</td>
</tr>
<tr>
<td>B</td>
<td>9,41</td>
<td>1,42</td>
<td>0,934152</td>
<td>0,85276</td>
</tr>
<tr>
<td>C</td>
<td>9,21</td>
<td>1,46</td>
<td>-0,141351</td>
<td>-0,129036</td>
</tr>
<tr>
<td>D</td>
<td>9,8</td>
<td>1,36</td>
<td>1,58683</td>
<td>1,44857</td>
</tr>
<tr>
<td>E</td>
<td>12,21</td>
<td>3,26</td>
<td>0,993276</td>
<td>0,906733</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,45873</td>
<td>0,665816</td>
<td>18,2934%</td>
<td>48,31</td>
</tr>
<tr>
<td>B</td>
<td>-1,16228</td>
<td>-0,530506</td>
<td>12,1031%</td>
<td>43,74</td>
</tr>
<tr>
<td>C</td>
<td>-1,89251</td>
<td>-0,863807</td>
<td>12,4058%</td>
<td>43,25</td>
</tr>
<tr>
<td>D</td>
<td>2,89814</td>
<td>1,32281</td>
<td>24,3424%</td>
<td>49,05</td>
</tr>
<tr>
<td>E</td>
<td>-0,302183</td>
<td>-0,137927</td>
<td>22,8936%</td>
<td>54,83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Contraste de Varianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Contraste C de Cochran: 0,362185 P-valor = 0,533717</td>
</tr>
<tr>
<td>B</td>
<td>Contraste de Bartlett: 1,28642 P-valor = 0,333242</td>
</tr>
<tr>
<td>C</td>
<td>Contraste de Hartley: 5,62227</td>
</tr>
<tr>
<td>D</td>
<td>Test de Levene: 0,567791 P-valor = 0,688929</td>
</tr>
</tbody>
</table>

95
Contraste de Kruskal-Wallis para EPA según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>13,9</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>11,0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>9,5</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>13,2</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>17,4</td>
</tr>
</tbody>
</table>

Estadístico = 3,36683 P-valor = 0,498413

DHA

Resumen Estadístico para DHA

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>23,14</td>
<td>19,14</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>19,48</td>
<td>17,82</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>19,48</td>
<td>20,33</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>20,11</td>
<td>19,13</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>24,69</td>
<td>23,08</td>
<td></td>
</tr>
</tbody>
</table>

Total 25 21,3772 19,14

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>22,4332</td>
<td>12,887</td>
<td>5,408</td>
<td>2,928</td>
</tr>
<tr>
<td>B</td>
<td>19,2369</td>
<td>14,629</td>
<td>3,824</td>
<td>1,708</td>
</tr>
<tr>
<td>C</td>
<td>19,1009</td>
<td>19,452</td>
<td>7,145</td>
<td>3,195</td>
</tr>
<tr>
<td>D</td>
<td>19,2098</td>
<td>24,696</td>
<td>8,316</td>
<td>3,713</td>
</tr>
<tr>
<td>E</td>
<td>23,7065</td>
<td>24,569</td>
<td>12,849</td>
<td>6,047</td>
</tr>
</tbody>
</table>

Total 20,6488 36,5714 21,3772

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primero cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17,68</td>
<td>25,00</td>
<td>7,32</td>
<td>18,3</td>
</tr>
<tr>
<td>B</td>
<td>16,18</td>
<td>22,49</td>
<td>6,31</td>
<td>18,8</td>
</tr>
<tr>
<td>C</td>
<td>13,52</td>
<td>20,53</td>
<td>6,97</td>
<td>18,3</td>
</tr>
<tr>
<td>D</td>
<td>13,52</td>
<td>31,64</td>
<td>18,12</td>
<td>18,3</td>
</tr>
<tr>
<td>E</td>
<td>17,69</td>
<td>38,22</td>
<td>20,53</td>
<td>18,3</td>
</tr>
</tbody>
</table>

Total 13,17 38,22 25,05

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuart.</th>
<th>Asimetría</th>
<th>Asimetría tipica</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17,68</td>
<td>11,81</td>
<td>0,581985</td>
<td>0,531277</td>
</tr>
<tr>
<td>B</td>
<td>21,15</td>
<td>3,87</td>
<td>1,08147</td>
<td>0,987243</td>
</tr>
<tr>
<td>C</td>
<td>22,4</td>
<td>3,55</td>
<td>-1,43786</td>
<td>-1,31258</td>
</tr>
<tr>
<td>D</td>
<td>21,24</td>
<td>6,19</td>
<td>1,27235</td>
<td>1,16149</td>
</tr>
<tr>
<td>E</td>
<td>26,12</td>
<td>7,75</td>
<td>2,38099</td>
<td>1,20949</td>
</tr>
</tbody>
</table>

Total 23,08 5,39 1,1664 2,38099

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Kurtosis</th>
<th>Kurtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-3,2832</td>
<td>-1,49857</td>
<td>28,3008%</td>
<td>115,7</td>
</tr>
<tr>
<td>B</td>
<td>0,0820255</td>
<td>0,0406344</td>
<td>18,4578%</td>
<td>97,43</td>
</tr>
<tr>
<td>C</td>
<td>2,02102</td>
<td>0,922465</td>
<td>19,6669%</td>
<td>97,24</td>
</tr>
<tr>
<td>D</td>
<td>1,68337</td>
<td>0,768349</td>
<td>35,5195%</td>
<td>100,58</td>
</tr>
<tr>
<td>E</td>
<td>1,79319</td>
<td>0,818476</td>
<td>33,6745%</td>
<td>123,48</td>
</tr>
</tbody>
</table>

Total 1,2539 1,27976 28,2892% 534,43

Contraste de Varianza

Contraste C de Cochran: 0,362731 P-valor = 0,530666
Contraste de Bartlett: 1,2298 P-valor = 0,439198
Contraste de Hartley: 5,34625
Test de Levene: 0,510003 P-valor = 0,729032
Contraste de Kruskal-Wallis para DNA según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>14,6</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>10,4</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>12,2</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>11,4</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>16,4</td>
<td></td>
</tr>
</tbody>
</table>

Estadístico = 2,22277 P-valor = 0,694863

ÍNDICE POLIENOS

Resumen Estadístico para Índice Polienos

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>1,566</td>
<td>1,48</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>1,438</td>
<td>1,39</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>1,406</td>
<td>1,41</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>1,432</td>
<td>1,38</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>1,564</td>
<td>1,41</td>
<td></td>
</tr>
</tbody>
</table>

Total 25 1,4812 1,41

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,54362</td>
<td>0,08888</td>
<td>0,298127</td>
<td>0,133327</td>
</tr>
<tr>
<td>B</td>
<td>1,42484</td>
<td>0,05057</td>
<td>0,224878</td>
<td>0,100568</td>
</tr>
<tr>
<td>C</td>
<td>1,39551</td>
<td>0,03653</td>
<td>0,191128</td>
<td>0,0854751</td>
</tr>
<tr>
<td>D</td>
<td>1,40747</td>
<td>0,09847</td>
<td>0,313799</td>
<td>0,140338</td>
</tr>
<tr>
<td>E</td>
<td>1,53787</td>
<td>0,11463</td>
<td>0,338571</td>
<td>0,151413</td>
</tr>
</tbody>
</table>

Total 1,46043 0,0698443 0,264281 0,0528562

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,24</td>
<td>1,94</td>
<td>0,7</td>
<td>1,36</td>
</tr>
<tr>
<td>B</td>
<td>1,23</td>
<td>1,8</td>
<td>0,57</td>
<td>1,29</td>
</tr>
<tr>
<td>C</td>
<td>1,19</td>
<td>1,61</td>
<td>0,42</td>
<td>1,24</td>
</tr>
<tr>
<td>D</td>
<td>1,19</td>
<td>1,96</td>
<td>0,77</td>
<td>1,2</td>
</tr>
<tr>
<td>E</td>
<td>1,1</td>
<td>2,13</td>
<td>1,03</td>
<td>1,36</td>
</tr>
</tbody>
</table>

Total 1,19 2,13 0,94 1,29

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tip.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,81</td>
<td>0,45</td>
<td>0,358784</td>
<td>0,327523</td>
</tr>
<tr>
<td>B</td>
<td>1,49</td>
<td>0,2</td>
<td>1,28761</td>
<td>1,17542</td>
</tr>
<tr>
<td>C</td>
<td>1,58</td>
<td>0,34</td>
<td>-0,053365</td>
<td>-0,0487167</td>
</tr>
<tr>
<td>D</td>
<td>1,43</td>
<td>0,23</td>
<td>1,6235</td>
<td>1,48204</td>
</tr>
<tr>
<td>E</td>
<td>1,62</td>
<td>0,26</td>
<td>1,6205</td>
<td>1,47945</td>
</tr>
</tbody>
</table>

Total 1,61 0,32 1,02611 2,09453

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2,26242</td>
<td>-1,03265</td>
<td>19,0375%</td>
<td>7,83</td>
</tr>
<tr>
<td>B</td>
<td>1,55232</td>
<td>0,708536</td>
<td>15,6382%</td>
<td>7,19</td>
</tr>
<tr>
<td>C</td>
<td>-2,76874</td>
<td>-1,26375</td>
<td>13,5938%</td>
<td>7,03</td>
</tr>
<tr>
<td>D</td>
<td>2,83587</td>
<td>1,29439</td>
<td>21,9134%</td>
<td>7,16</td>
</tr>
<tr>
<td>E</td>
<td>2,44419</td>
<td>1,11362</td>
<td>21,6477%</td>
<td>7,82</td>
</tr>
</tbody>
</table>

Total 0,220184 0,224724 17,8423% 37,03

Contraste de Varianza

Contraste C de Cochran: 0,294618 P-valor = 1,0
Contraste de Bartlett: 1,09013 P-valor = 0,81434
Contraste de Hartley: 3,13797
Test de Levene: 0,161919 P-valor = 0,955163
Tabla ANOVA para Índice Polienos según Individuo

Análisis de la Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuadr.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,119944</td>
<td>4</td>
<td>0,029986</td>
<td>0,39</td>
<td>0,8165</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>1,55632</td>
<td>20</td>
<td>0,077816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>1,67626</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dieta II

ACEITE

Resumen Estadístico para Aceite

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>12,546</td>
<td>11,8</td>
<td>12</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>12,428</td>
<td>12,35</td>
<td>12,97</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>12,346</td>
<td>12,97</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>13,472</td>
<td>12,81</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>13,52</td>
<td>12,3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12,3908</td>
<td>4,92478</td>
<td>2,21918</td>
<td>0,992449</td>
</tr>
<tr>
<td>B</td>
<td>12,0527</td>
<td>10,8796</td>
<td>3,29843</td>
<td>1,4751</td>
</tr>
<tr>
<td>C</td>
<td>12,2736</td>
<td>2,1593</td>
<td>1,46967</td>
<td>0,657256</td>
</tr>
<tr>
<td>D</td>
<td>13,0667</td>
<td>15,1996</td>
<td>3,89866</td>
<td>1,74353</td>
</tr>
<tr>
<td>E</td>
<td>13,2782</td>
<td>8,9096</td>
<td>2,9849</td>
<td>1,33489</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10,09</td>
<td>15,2</td>
<td>5,11</td>
<td>11,1</td>
</tr>
<tr>
<td>B</td>
<td>7,75</td>
<td>16,93</td>
<td>9,18</td>
<td>11,74</td>
</tr>
<tr>
<td>C</td>
<td>10,42</td>
<td>13,73</td>
<td>3,31</td>
<td>11,16</td>
</tr>
<tr>
<td>D</td>
<td>9,43</td>
<td>18,92</td>
<td>10,49</td>
<td>11,92</td>
</tr>
<tr>
<td>E</td>
<td>10,68</td>
<td>18,3</td>
<td>7,62</td>
<td>11,94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14,54</td>
<td>3,44</td>
<td>0,319074</td>
<td>0,291273</td>
</tr>
<tr>
<td>B</td>
<td>13,37</td>
<td>1,63</td>
<td>-0,123257</td>
<td>-0,112518</td>
</tr>
<tr>
<td>C</td>
<td>13,45</td>
<td>2,29</td>
<td>-0,600266</td>
<td>-0,547965</td>
</tr>
<tr>
<td>D</td>
<td>13,28</td>
<td>1,36</td>
<td>1,39231</td>
<td>1,271</td>
</tr>
<tr>
<td>E</td>
<td>14,38</td>
<td>2,44</td>
<td>1,27197</td>
<td>1,1614</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2,51167</td>
<td>-1,14642</td>
<td>17,6884</td>
<td>62,73</td>
</tr>
<tr>
<td>B</td>
<td>1,40619</td>
<td>0,641833</td>
<td>26,5403</td>
<td>62,14</td>
</tr>
<tr>
<td>C</td>
<td>-2,36134</td>
<td>-1,0778</td>
<td>11,904</td>
<td>61,73</td>
</tr>
<tr>
<td>D</td>
<td>2,82958</td>
<td>1,29152</td>
<td>28,939</td>
<td>67,36</td>
</tr>
<tr>
<td>E</td>
<td>1,38666</td>
<td>0,63292</td>
<td>22,0776</td>
<td>67,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1,24585</td>
</tr>
<tr>
<td></td>
<td>1,27154</td>
</tr>
<tr>
<td></td>
<td>20,9993%</td>
</tr>
<tr>
<td></td>
<td>321,56</td>
</tr>
</tbody>
</table>
Contraste de Varianza
Contraste de Cochran: 0,361262 P-valor = 0,538903
Contraste de Bartlett: 1,21903 P-valor = 0,462698
Contraste de Hartley: 7,03707
Test de Levene: 0,261774 P-valor = 0,898971

Tabla ANOVA para Aceite según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>6,79766</td>
<td>4</td>
<td>1,69941</td>
<td>0,20</td>
<td>0,9343</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>168,294</td>
<td>20</td>
<td>8,4147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>175,092</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALFA TOCOFEROL

Resumen Estadístico para Alpha Toc

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>173,276</td>
<td>133,69</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>154,374</td>
<td>160,19</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>192,612</td>
<td>201,75</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>213,158</td>
<td>224,98</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>189,004</td>
<td>186,7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>143,703</td>
<td>12723,0</td>
<td>112,796</td>
<td>50,4441</td>
</tr>
<tr>
<td>B</td>
<td>141,775</td>
<td>4771,95</td>
<td>69,0793</td>
<td>30,8932</td>
</tr>
<tr>
<td>C</td>
<td>187,681</td>
<td>2338,43</td>
<td>48,3573</td>
<td>21,626</td>
</tr>
<tr>
<td>D</td>
<td>209,661</td>
<td>1769,22</td>
<td>42,0621</td>
<td>18,8107</td>
</tr>
<tr>
<td>E</td>
<td>182,913</td>
<td>2897,75</td>
<td>53,8308</td>
<td>24,0739</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>58,32</td>
<td>329,0</td>
<td>270,68</td>
<td>95,68</td>
</tr>
<tr>
<td>B</td>
<td>73,46</td>
<td>256,32</td>
<td>182,86</td>
<td>111,34</td>
</tr>
<tr>
<td>C</td>
<td>131,73</td>
<td>260,12</td>
<td>128,39</td>
<td>163,73</td>
</tr>
<tr>
<td>D</td>
<td>158,88</td>
<td>254,28</td>
<td>95,4</td>
<td>178,92</td>
</tr>
<tr>
<td>E</td>
<td>130,34</td>
<td>262,03</td>
<td>131,69</td>
<td>145,97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>249,69</td>
<td>154,01</td>
<td>0,631225</td>
<td>0,576227</td>
</tr>
<tr>
<td>B</td>
<td>170,56</td>
<td>59,22</td>
<td>0,574504</td>
<td>0,524448</td>
</tr>
<tr>
<td>C</td>
<td>205,73</td>
<td>42,0</td>
<td>0,224465</td>
<td>0,204907</td>
</tr>
<tr>
<td>D</td>
<td>247,73</td>
<td>67,81</td>
<td>-0,470879</td>
<td>-0,429943</td>
</tr>
<tr>
<td>E</td>
<td>219,98</td>
<td>74,01</td>
<td>0,367433</td>
<td>0,335419</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1,5483</td>
<td>-0,706697</td>
<td>65,0964%</td>
<td>866,38</td>
</tr>
<tr>
<td>B</td>
<td>0,474285</td>
<td>0,21648</td>
<td>44,748%</td>
<td>771,87</td>
</tr>
<tr>
<td>C</td>
<td>0,0557756</td>
<td>0,0254579</td>
<td>25,1061%</td>
<td>963,06</td>
</tr>
<tr>
<td>D</td>
<td>-2,32625</td>
<td>-1,06178</td>
<td>19,7328%</td>
<td>1065,79</td>
</tr>
<tr>
<td>E</td>
<td>-1,355837</td>
<td>-0,618847</td>
<td>28,4813%</td>
<td>945,02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Total</th>
<th>-0,448085</th>
<th>-0,457325</th>
<th>36,3123%</th>
<th>4612,12</th>
</tr>
</thead>
</table>

99
Contraste de Varianza
Contraste C de Cochran: 0,519299 P-valor = 0,0734758
Contraste de Bartlett: 1,31157 P-valor = 0,294409
Contraste de Hartley: 7,19134
Test de Levene: 1,15762 P-valor = 0,358891

Tabla ANOVA para Alpha Toc según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>9704,62</td>
<td>4</td>
<td>2426,16</td>
<td>0,50</td>
<td>0,7395</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>98001,5</td>
<td>20</td>
<td>4900,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>107706,0</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BETA TOCOFEROL

Resumen Estadístico para Beta Toc

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>0,938</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>1,078</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>0,4032</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,07752</td>
<td>1,44136</td>
<td>0,644596</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2,20202</td>
<td>1,48392</td>
<td>0,663629</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0,969314</td>
<td>0,984538</td>
<td>0,196908</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>3,27</td>
<td>3,27</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>C</td>
<td>0,0</td>
<td>2,91</td>
<td>2,91</td>
<td>0,0</td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>0,0</td>
<td>3,27</td>
<td>3,27</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuart.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,42</td>
<td>1,42</td>
<td>1,43571</td>
<td>1,31062</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>C</td>
<td>2,48</td>
<td>2,48</td>
<td>0,656211</td>
<td>0,599036</td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>0,0</td>
<td>2,27539</td>
<td>4,64462</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,25335</td>
<td>0,572074</td>
<td>153,663%</td>
<td>4,69</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>%</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-3,05579</td>
<td>-1,39477</td>
<td>137,655%</td>
<td>5,39</td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>%</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>%</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,83461</td>
<td>3,91368</td>
<td>244,181%</td>
<td>10,08</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,514546 P-valor = 0,956374
Contraste de Bartlett: 1,00042 P-valor = 0,956244
Contraste de Hartley: 1,05993

Test de Levene: 1,79499 P-valor = 0,169476

Contraste de Kruskal-Wallis para Beta Toc según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango Medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>16,0</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>11,0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>16,0</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>11,0</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>11,0</td>
</tr>
</tbody>
</table>

Estadístico = 6,79245 P-valor = 0,147271

GAMMA TOCOFEROL

Resumen Estadístico para Gamma Toc

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>22,32</td>
<td>23,49</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>20,44</td>
<td>17,05</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>22,60</td>
<td>23,33</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>26,58</td>
<td>23,22</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>25,63</td>
<td>22,36</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>23,51</td>
<td>22,36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>21,3906</td>
<td>49,2718</td>
<td>7,0193</td>
<td>3,13916</td>
</tr>
<tr>
<td>B</td>
<td>19,0221</td>
<td>89,0042</td>
<td>9,43421</td>
<td>4,2191</td>
</tr>
<tr>
<td>C</td>
<td>22,0335</td>
<td>58,5428</td>
<td>5,3455</td>
<td>2,38926</td>
</tr>
<tr>
<td>D</td>
<td>25,9031</td>
<td>47,1164</td>
<td>6,86413</td>
<td>3,06974</td>
</tr>
<tr>
<td>E</td>
<td>24,0498</td>
<td>110,618</td>
<td>10,5175</td>
<td>4,70357</td>
</tr>
<tr>
<td>Total</td>
<td>22,3566</td>
<td>59,3968</td>
<td>7,70693</td>
<td>1,54139</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12,76</td>
<td>15,13</td>
</tr>
<tr>
<td>B</td>
<td>12,76</td>
<td>14,83</td>
</tr>
<tr>
<td>C</td>
<td>14,43</td>
<td>20,91</td>
</tr>
<tr>
<td>D</td>
<td>21,03</td>
<td>21,09</td>
</tr>
<tr>
<td>E</td>
<td>16,17</td>
<td>21,05</td>
</tr>
<tr>
<td>Total</td>
<td>12,76</td>
<td>17,05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28,18</td>
<td>13,05</td>
<td>-0,171168</td>
<td>-0,156254</td>
</tr>
<tr>
<td>B</td>
<td>21,23</td>
<td>6,4</td>
<td>1,66752</td>
<td>1,5223</td>
</tr>
<tr>
<td>C</td>
<td>26,16</td>
<td>5,25</td>
<td>-0,904688</td>
<td>-0,825864</td>
</tr>
<tr>
<td>D</td>
<td>31,16</td>
<td>10,07</td>
<td>0,848005</td>
<td>0,77412</td>
</tr>
<tr>
<td>E</td>
<td>30,58</td>
<td>13,05</td>
<td>0,971865</td>
<td>0,886913</td>
</tr>
<tr>
<td>Total</td>
<td>28,18</td>
<td>11,15</td>
<td>0,646327</td>
<td>1,31931</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2,9165</td>
<td>-1,3312</td>
<td>31,446%</td>
<td>111,61</td>
</tr>
<tr>
<td>B</td>
<td>2,84928</td>
<td>1,30051</td>
<td>46,1421%</td>
<td>102,23</td>
</tr>
<tr>
<td>C</td>
<td>0,616509</td>
<td>0,281396</td>
<td>23,6333%</td>
<td>113,03</td>
</tr>
<tr>
<td>D</td>
<td>-1,50767</td>
<td>-0,688155</td>
<td>25,8361%</td>
<td>132,84</td>
</tr>
<tr>
<td>E</td>
<td>-0,172879</td>
<td>-0,073908</td>
<td>41,0359%</td>
<td>128,15</td>
</tr>
<tr>
<td>Total</td>
<td>-0,23002</td>
<td>-0,23086</td>
<td>32,7754%</td>
<td>587,86</td>
</tr>
</tbody>
</table>
Contraste de Varianza
Contraste C de Cochran: 0,340831 P-valor = 0,664142
Contraste de Bartlett: 1,12051 P-valor = 0,723111
Contraste de Hartley: 3,8755
Test de Levene: 0,309782 P-valor = 0,868018

Tabla ANOVA para Gamma Toc según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>127,312</td>
<td>4</td>
<td>31,8279</td>
<td>0,49</td>
<td>0,7428</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>1298,21</td>
<td>20</td>
<td>64,9106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>1425,52</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DELTA TOCOFEROL

Resumen Estadístico para Delta Toc

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>4,136</td>
<td>3,75</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>1,942</td>
<td>2,25</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>4,73</td>
<td>2,58</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>10,158</td>
<td>6,88</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>5,418</td>
<td>2,93</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>5,2768</td>
<td>3,11</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11,4258</td>
<td>3,38021</td>
<td>1,51168</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1,85817</td>
<td>1,36315</td>
<td>0,609618</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3,47895</td>
<td>4,69126</td>
<td>2,098</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>7,08487</td>
<td>8,66431</td>
<td>3,8748</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>63,1072</td>
<td>7,944</td>
<td>3,55267</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>36,5298</td>
<td>6,04399</td>
<td>1,2088</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>9,36</td>
<td>9,36</td>
<td>3,11</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>3,34</td>
<td>3,34</td>
<td>1,17</td>
</tr>
<tr>
<td>C</td>
<td>1,66</td>
<td>12,91</td>
<td>11,25</td>
<td>2,99</td>
</tr>
<tr>
<td>D</td>
<td>1,81</td>
<td>22,72</td>
<td>20,91</td>
<td>4,14</td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>19,42</td>
<td>19,42</td>
<td>1,31</td>
</tr>
<tr>
<td>Total</td>
<td>0,0</td>
<td>22,72</td>
<td>22,72</td>
<td>1,81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4,46</td>
<td>1,35</td>
<td>0,762825</td>
<td>0,696361</td>
</tr>
<tr>
<td>B</td>
<td>2,95</td>
<td>1,78</td>
<td>-0,657732</td>
<td>-0,600425</td>
</tr>
<tr>
<td>C</td>
<td>4,41</td>
<td>2,32</td>
<td>1,97765</td>
<td>1,80534</td>
</tr>
<tr>
<td>D</td>
<td>15,24</td>
<td>11,1</td>
<td>0,819099</td>
<td>0,747732</td>
</tr>
<tr>
<td>E</td>
<td>3,43</td>
<td>2,12</td>
<td>2,07247</td>
<td>1,8919</td>
</tr>
<tr>
<td>Total</td>
<td>4,46</td>
<td>2,65</td>
<td>1,81453</td>
<td>3,70389</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,9438</td>
<td>0,887219</td>
<td>81,7266%</td>
<td>20,68</td>
</tr>
<tr>
<td>B</td>
<td>-0,962419</td>
<td>-0,439282</td>
<td>70,1933%</td>
<td>9,71</td>
</tr>
<tr>
<td>C</td>
<td>3,96462</td>
<td>1,8096</td>
<td>98,1813%</td>
<td>23,65</td>
</tr>
<tr>
<td>D</td>
<td>-0,93471</td>
<td>-0,426078</td>
<td>85,2955%</td>
<td>50,79</td>
</tr>
<tr>
<td>E</td>
<td>4,44138</td>
<td>2,0272</td>
<td>146,622%</td>
<td>27,09</td>
</tr>
<tr>
<td>Total</td>
<td>2,58757</td>
<td>2,64093</td>
<td>114,539%</td>
<td>131,92</td>
</tr>
</tbody>
</table>

102
Contraste de Varianza

Contraste C de Cochran: 0,432758 P-valor = 0,23914
Contraste de Bartlett: 1,86738 P-valor = 0,022849
Contraste de Hartley: 40,4001 P-valor = 0,433625

Contraste de Kruskal-Wallis para Delta Toc según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>14,2</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>8,2</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>12,8</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>18,4</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>11,4</td>
</tr>
</tbody>
</table>

Estadístico = 5,19938 P-valor = 0,267444

ÍNDICE PERÓXIDOS

Resumen Estadístico para Índice Peróxidos

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>8,988</td>
<td>11,18</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>9,188</td>
<td>9,92</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>7,622</td>
<td>8,24</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>8,29</td>
<td>10,47</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>8,872</td>
<td>9,16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>8,592</td>
<td>9,16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7,30892</td>
<td>31,1806</td>
<td>5,58396</td>
<td>2,49722</td>
</tr>
<tr>
<td>B</td>
<td>7,30917</td>
<td>36,9878</td>
<td>6,08176</td>
<td>2,71984</td>
</tr>
<tr>
<td>C</td>
<td>6,89764</td>
<td>13,3788</td>
<td>3,6577</td>
<td>1,63577</td>
</tr>
<tr>
<td>D</td>
<td>6,85615</td>
<td>23,4243</td>
<td>4,83986</td>
<td>2,16445</td>
</tr>
<tr>
<td>E</td>
<td>6,10159</td>
<td>50,2396</td>
<td>7,08799</td>
<td>3,16984</td>
</tr>
<tr>
<td>Total</td>
<td>6,88001</td>
<td>26,2065</td>
<td>5,1923</td>
<td>1,02385</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,89</td>
<td>15,84</td>
<td>12,95</td>
<td>3,55</td>
</tr>
<tr>
<td>B</td>
<td>3,08</td>
<td>16,91</td>
<td>13,83</td>
<td>3,13</td>
</tr>
<tr>
<td>C</td>
<td>4,01</td>
<td>12,69</td>
<td>8,68</td>
<td>4,11</td>
</tr>
<tr>
<td>D</td>
<td>2,93</td>
<td>12,66</td>
<td>9,73</td>
<td>3,2</td>
</tr>
<tr>
<td>E</td>
<td>1,92</td>
<td>18,32</td>
<td>16,4</td>
<td>2,03</td>
</tr>
<tr>
<td>Total</td>
<td>1,92</td>
<td>18,32</td>
<td>16,4</td>
<td>3,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11,48</td>
<td>7,93</td>
<td>-0,0953918</td>
<td>-0,0870804</td>
</tr>
<tr>
<td>B</td>
<td>12,9</td>
<td>9,77</td>
<td>0,114464</td>
<td>0,104491</td>
</tr>
<tr>
<td>C</td>
<td>9,06</td>
<td>4,95</td>
<td>0,365597</td>
<td>0,333743</td>
</tr>
<tr>
<td>D</td>
<td>12,19</td>
<td>8,99</td>
<td>-0,48782</td>
<td>-0,445317</td>
</tr>
<tr>
<td>E</td>
<td>12,93</td>
<td>10,9</td>
<td>0,297127</td>
<td>0,271239</td>
</tr>
<tr>
<td>Total</td>
<td>12,66</td>
<td>9,46</td>
<td>0,176811</td>
<td>0,360915</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2,18448</td>
<td>-0,997075</td>
<td>62,1268%</td>
<td>44,94</td>
</tr>
<tr>
<td>B</td>
<td>-2,07524</td>
<td>-0,947215</td>
<td>66,1924%</td>
<td>45,94</td>
</tr>
<tr>
<td>C</td>
<td>-1,11095</td>
<td>-0,507077</td>
<td>47,9887%</td>
<td>38,11</td>
</tr>
<tr>
<td>D</td>
<td>-1,18121</td>
<td>-1,45202</td>
<td>58,3819%</td>
<td>41,45</td>
</tr>
<tr>
<td>E</td>
<td>-1,67741</td>
<td>-0,765631</td>
<td>79,8917%</td>
<td>44,36</td>
</tr>
<tr>
<td>Total</td>
<td>-1,22315</td>
<td>-1,24838</td>
<td>59,5814%</td>
<td>214,8</td>
</tr>
</tbody>
</table>
Contraste de Varianza
Contraste C de Cochran: 0,323686 P-valor = 0,78558
Contraste de Bartlett: 1,09683 P-valor = 0,794275
Contraste de Hartley: 3,75517
Test de Levene: 0,483796 P-valor = 0,747411

Tabla ANOVA para Índice Peróxidos según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>8,11268</td>
<td>4</td>
<td>2,02817</td>
<td>0,07</td>
<td>0,9915</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>620,844</td>
<td>20</td>
<td>31,0422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>628,956</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VALOR p-ANISIDINA

Resumen Estadístico para p Anisidina

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>6,072</td>
<td>5,64</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>5,738</td>
<td>5,45</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>4,996</td>
<td>3,48</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>5,684</td>
<td>5,66</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>5,484</td>
<td>5,64</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>5,5948</td>
<td>5,64</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5,5103</td>
<td>8,1387</td>
<td>2,85252</td>
<td>1,27569</td>
</tr>
<tr>
<td>B</td>
<td>5,1925</td>
<td>7,1378</td>
<td>2,67168</td>
<td>1,19481</td>
</tr>
<tr>
<td>C</td>
<td>4,45288</td>
<td>7,11238</td>
<td>2,66999</td>
<td>1,19271</td>
</tr>
<tr>
<td>D</td>
<td>5,06558</td>
<td>8,10233</td>
<td>2,84646</td>
<td>1,27298</td>
</tr>
<tr>
<td>E</td>
<td>4,83574</td>
<td>8,09028</td>
<td>2,84434</td>
<td>1,27203</td>
</tr>
<tr>
<td>Total</td>
<td>4,99846</td>
<td>6,56066</td>
<td>2,56138</td>
<td>0,512276</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,98</td>
<td>9,24</td>
<td>6,26</td>
<td>3,73</td>
</tr>
<tr>
<td>B</td>
<td>2,49</td>
<td>8,96</td>
<td>6,47</td>
<td>3,96</td>
</tr>
<tr>
<td>C</td>
<td>2,51</td>
<td>8,27</td>
<td>5,76</td>
<td>3,24</td>
</tr>
<tr>
<td>D</td>
<td>2,79</td>
<td>8,65</td>
<td>5,86</td>
<td>2,9</td>
</tr>
<tr>
<td>E</td>
<td>2,51</td>
<td>8,81</td>
<td>6,3</td>
<td>2,75</td>
</tr>
<tr>
<td>Total</td>
<td>2,49</td>
<td>9,24</td>
<td>6,75</td>
<td>2,98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8,77</td>
<td>5,04</td>
<td>0,160607</td>
<td>0,146614</td>
</tr>
<tr>
<td>B</td>
<td>7,83</td>
<td>3,87</td>
<td>0,059753</td>
<td>0,0537456</td>
</tr>
<tr>
<td>C</td>
<td>7,48</td>
<td>4,24</td>
<td>0,57456</td>
<td>0,524499</td>
</tr>
<tr>
<td>D</td>
<td>8,42</td>
<td>5,52</td>
<td>0,0136846</td>
<td>0,0124922</td>
</tr>
<tr>
<td>E</td>
<td>7,71</td>
<td>4,96</td>
<td>0,0196799</td>
<td>0,0179652</td>
</tr>
<tr>
<td>Total</td>
<td>8,27</td>
<td>5,29</td>
<td>0,12072</td>
<td>0,246418</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2,80365</td>
<td>-1,27968</td>
<td>46,9783%</td>
<td>30,36</td>
</tr>
<tr>
<td>B</td>
<td>-1,91018</td>
<td>-0,671874</td>
<td>46,5612%</td>
<td>28,69</td>
</tr>
<tr>
<td>C</td>
<td>-2,91339</td>
<td>-1,32886</td>
<td>53,3825%</td>
<td>24,98</td>
</tr>
<tr>
<td>D</td>
<td>-2,97997</td>
<td>-1,36016</td>
<td>50,0785%</td>
<td>29,42</td>
</tr>
<tr>
<td>E</td>
<td>-2,633</td>
<td>-1,20179</td>
<td>51,8662%</td>
<td>27,42</td>
</tr>
<tr>
<td>Total</td>
<td>-1,74389</td>
<td>-1,77985</td>
<td>45,7814%</td>
<td>138,87</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,210908 P-valor = 1,0
Contraste de Bartlett: 1,002 P-valor = 0,999938
Contraste de Hartley: 1,14397 P-valor = 0,99769

Test de Levene: 0,0332741 P-valor = 0,99769

Tabla ANOVA para p Anisidina según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>3,1351</td>
<td>4</td>
<td>0,783776</td>
<td>0,10</td>
<td>0,9807</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>154,321</td>
<td>20</td>
<td>7,71604</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>157,456</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NBVT

Resumen Estadístico para NBVT

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>8,14</td>
<td>7,4</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>7,68</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>8,12</td>
<td>8,7</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>8,16</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>7,8</td>
<td>6,6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>8,02</td>
<td>7,5</td>
<td>6,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7,91042</td>
<td>4,978</td>
<td>2,2314</td>
<td>0,997798</td>
</tr>
<tr>
<td>B</td>
<td>7,57934</td>
<td>1,962</td>
<td>1,40071</td>
<td>0,626418</td>
</tr>
<tr>
<td>C</td>
<td>8,06972</td>
<td>4,647</td>
<td>2,15569</td>
<td>0,964054</td>
</tr>
<tr>
<td>D</td>
<td>7,99628</td>
<td>3,413</td>
<td>1,84743</td>
<td>0,826196</td>
</tr>
<tr>
<td>E</td>
<td>7,42076</td>
<td>8,195</td>
<td>2,86269</td>
<td>1,28023</td>
</tr>
<tr>
<td>Total</td>
<td>7,79121</td>
<td>3,92583</td>
<td>1,98137</td>
<td>0,396274</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,2</td>
<td>11,4</td>
<td>5,2</td>
<td>6,3</td>
</tr>
<tr>
<td>B</td>
<td>6,1</td>
<td>9,6</td>
<td>3,5</td>
<td>6,7</td>
</tr>
<tr>
<td>C</td>
<td>5,2</td>
<td>10,3</td>
<td>5,1</td>
<td>6,7</td>
</tr>
<tr>
<td>D</td>
<td>6,3</td>
<td>10,8</td>
<td>4,5</td>
<td>6,5</td>
</tr>
<tr>
<td>E</td>
<td>5,0</td>
<td>12,3</td>
<td>7,3</td>
<td>6,3</td>
</tr>
<tr>
<td>Total</td>
<td>5,0</td>
<td>12,3</td>
<td>7,3</td>
<td>6,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9,4</td>
<td>3,1</td>
<td>0,851978</td>
<td>0,777746</td>
</tr>
<tr>
<td>B</td>
<td>8,5</td>
<td>1,8</td>
<td>0,415108</td>
<td>0,37894</td>
</tr>
<tr>
<td>C</td>
<td>10,2</td>
<td>3,0</td>
<td>-0,72017</td>
<td>-0,657423</td>
</tr>
<tr>
<td>D</td>
<td>8,8</td>
<td>2,3</td>
<td>0,506623</td>
<td>0,462481</td>
</tr>
<tr>
<td>E</td>
<td>8,8</td>
<td>2,5</td>
<td>1,1557</td>
<td>1,05501</td>
</tr>
<tr>
<td>Total</td>
<td>9,4</td>
<td>3,1</td>
<td>0,470274</td>
<td>0,959943</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0,867714</td>
<td>-0,396056</td>
<td>27,4096%</td>
<td>40,7</td>
</tr>
<tr>
<td>B</td>
<td>-1,11683</td>
<td>-0,509761</td>
<td>18,2385%</td>
<td>38,4</td>
</tr>
<tr>
<td>C</td>
<td>-0,80987</td>
<td>-0,369653</td>
<td>25,9097%</td>
<td>41,6</td>
</tr>
<tr>
<td>D</td>
<td>-0,669853</td>
<td>-0,305745</td>
<td>22,6401%</td>
<td>40,8</td>
</tr>
<tr>
<td>E</td>
<td>0,927902</td>
<td>0,423527</td>
<td>36,7012%</td>
<td>39,0</td>
</tr>
<tr>
<td>Total</td>
<td>-0,648336</td>
<td>-0,661705</td>
<td>24,7054%</td>
<td>200,5</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,353309 P-valor = 0,585253
Contraste de Bartlett: 1,11097 P-valor = 0,751697
Contraste de Hartley: 4,17686
Test de Levene: 0,267779 P-valor = 0,895204

Tabla ANOVA para NBVT según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>1,44</td>
<td>4</td>
<td>0,36</td>
<td>0,08</td>
<td>0,9883</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>92,78</td>
<td>20</td>
<td>4,639</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>94,22</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DMA

Resumen Estadístico para DMA

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>0,244</td>
<td>0,15</td>
<td>0,12</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>0,474</td>
<td>0,37</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>0,286</td>
<td>0,29</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>0,222</td>
<td>0,27</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>0,442</td>
<td>0,43</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>0,336</td>
<td>0,31</td>
<td>0,12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,202232</td>
<td>0,03233</td>
<td>0,179805</td>
<td>0,0804114</td>
</tr>
<tr>
<td>B</td>
<td>0,377154</td>
<td>0,13963</td>
<td>0,373671</td>
<td>0,167111</td>
</tr>
<tr>
<td>C</td>
<td>0,265249</td>
<td>0,01373</td>
<td>0,117175</td>
<td>0,0524023</td>
</tr>
<tr>
<td>D</td>
<td>0,150939</td>
<td>0,02237</td>
<td>0,149566</td>
<td>0,066888</td>
</tr>
<tr>
<td>E</td>
<td>0,430557</td>
<td>0,01277</td>
<td>0,113004</td>
<td>0,0505371</td>
</tr>
<tr>
<td>Total</td>
<td>0,26532</td>
<td>0,048099</td>
<td>0,219315</td>
<td>0,043863</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,12</td>
<td>0,54</td>
<td>0,42</td>
<td>0,12</td>
</tr>
<tr>
<td>B</td>
<td>0,15</td>
<td>1,1</td>
<td>0,95</td>
<td>0,25</td>
</tr>
<tr>
<td>C</td>
<td>0,14</td>
<td>0,44</td>
<td>0,3</td>
<td>0,21</td>
</tr>
<tr>
<td>D</td>
<td>0,02</td>
<td>0,39</td>
<td>0,37</td>
<td>0,12</td>
</tr>
<tr>
<td>E</td>
<td>0,31</td>
<td>0,6</td>
<td>0,29</td>
<td>0,37</td>
</tr>
<tr>
<td>Total</td>
<td>0,02</td>
<td>1,1</td>
<td>1,08</td>
<td>0,15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,29</td>
<td>0,17</td>
<td>1,53302</td>
<td>1,39945</td>
</tr>
<tr>
<td>B</td>
<td>0,5</td>
<td>0,25</td>
<td>1,58883</td>
<td>1,45039</td>
</tr>
<tr>
<td>C</td>
<td>0,35</td>
<td>0,14</td>
<td>0,0941066</td>
<td>0,085972</td>
</tr>
<tr>
<td>D</td>
<td>0,31</td>
<td>0,19</td>
<td>-0,469485</td>
<td>-0,428579</td>
</tr>
<tr>
<td>E</td>
<td>0,5</td>
<td>0,13</td>
<td>0,42285</td>
<td>0,386007</td>
</tr>
<tr>
<td>Total</td>
<td>0,43</td>
<td>0,28</td>
<td>1,74663</td>
<td>3,56528</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,84468</td>
<td>0,841979</td>
<td>73,6908%</td>
<td>1,22</td>
</tr>
<tr>
<td>B</td>
<td>2,72125</td>
<td>1,24208</td>
<td>78,8335%</td>
<td>2,37</td>
</tr>
<tr>
<td>C</td>
<td>-0,925152</td>
<td>-0,422272</td>
<td>40,9703%</td>
<td>1,43</td>
</tr>
<tr>
<td>D</td>
<td>-1,41778</td>
<td>-0,647127</td>
<td>67,3721%</td>
<td>1,11</td>
</tr>
<tr>
<td>E</td>
<td>-0,602939</td>
<td>-0,275203</td>
<td>25,5666%</td>
<td>2,21</td>
</tr>
<tr>
<td>Total</td>
<td>5,22647</td>
<td>5,33424</td>
<td>65,7419%</td>
<td>8,34</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,632296 P-valor = 0,010123
Contraste de Bartlett: 1,56843 P-valor = 0,085093
Contraste de Hartley: 10,9342 P-valor = 0,026141
Test de Levene: 0,822484 P-valor = 0,526141

Contraste de Kruskal-Wallis para DMA según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>9,4</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>15,7</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>11,9</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>9,1</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>18,9</td>
</tr>
</tbody>
</table>

Estadístico = 6,62107 P-valor = 0,15732

HCHO

Resumen Estadístico para HCHO

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>0,466</td>
<td>0,62</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>0,45</td>
<td>0,63</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>0,524</td>
<td>0,64</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>0,448</td>
<td>0,61</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>0,42</td>
<td>0,57</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,08218</td>
<td>0,08218</td>
<td>0,08218</td>
<td>0,08218</td>
</tr>
<tr>
<td>B</td>
<td>0,12075</td>
<td>0,12075</td>
<td>0,12075</td>
<td>0,12075</td>
</tr>
<tr>
<td>C</td>
<td>0,09173</td>
<td>0,09173</td>
<td>0,09173</td>
<td>0,09173</td>
</tr>
<tr>
<td>D</td>
<td>0,07837</td>
<td>0,07837</td>
<td>0,07837</td>
<td>0,07837</td>
</tr>
<tr>
<td>E</td>
<td>0,1104</td>
<td>0,1104</td>
<td>0,1104</td>
<td>0,1104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>0,69</td>
<td>0,69</td>
<td>0,38</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>0,79</td>
<td>0,79</td>
<td>0,16</td>
</tr>
<tr>
<td>C</td>
<td>0,0</td>
<td>0,75</td>
<td>0,75</td>
<td>0,54</td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>0,67</td>
<td>0,67</td>
<td>0,34</td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>0,73</td>
<td>0,73</td>
<td>0,13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuart.</th>
<th>Asimetría</th>
<th>Asimetría tip.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,64</td>
<td>0,26</td>
<td>-1,44447</td>
<td>-1,31861</td>
</tr>
<tr>
<td>B</td>
<td>0,67</td>
<td>0,51</td>
<td>-0,593131</td>
<td>-0,541452</td>
</tr>
<tr>
<td>C</td>
<td>0,69</td>
<td>0,15</td>
<td>-1,85263</td>
<td>-1,72772</td>
</tr>
<tr>
<td>D</td>
<td>0,62</td>
<td>0,28</td>
<td>-1,32103</td>
<td>-1,20593</td>
</tr>
<tr>
<td>E</td>
<td>0,67</td>
<td>0,54</td>
<td>-0,564377</td>
<td>-0,515203</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,478</td>
<td>0,674612</td>
<td>61,5173%</td>
<td>2,33</td>
</tr>
<tr>
<td>B</td>
<td>-2,44168</td>
<td>-1,11447</td>
<td>77,2202%</td>
<td>2,25</td>
</tr>
<tr>
<td>C</td>
<td>3,72711</td>
<td>1,70118</td>
<td>57,7995%</td>
<td>2,62</td>
</tr>
<tr>
<td>D</td>
<td>0,812274</td>
<td>0,370751</td>
<td>62,8855%</td>
<td>2,24</td>
</tr>
<tr>
<td>E</td>
<td>-2,68362</td>
<td>-1,2249</td>
<td>79,1107%</td>
<td>2,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,478</td>
</tr>
<tr>
<td>B</td>
<td>-2,44168</td>
</tr>
<tr>
<td>C</td>
<td>3,72711</td>
</tr>
<tr>
<td>D</td>
<td>0,812274</td>
</tr>
<tr>
<td>E</td>
<td>-2,68362</td>
</tr>
<tr>
<td>Total</td>
<td>-1,1276</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,249262 P-valor = 1,0
Contraste de Bartlett: 1,01368 P-valor = 0,992967
Contraste de Hartley: 1,52136
Test de Levene: 0,111851 P-valor = 0,976907

Tabla ANOVA para HCHO según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,029816</td>
<td>4</td>
<td>0,007454</td>
<td>0,08</td>
<td>0,9885</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>1,93772</td>
<td>20</td>
<td>0,096886</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>1,96754</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pH

Resumen Estadístico para pH

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>6,27</td>
<td>6,27</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>6,21</td>
<td>6,23</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>6,226</td>
<td>6,22</td>
<td>6,26</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>6,21</td>
<td>6,17</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>6,204</td>
<td>6,2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>6,224</td>
<td>6,21</td>
<td>6,15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,26876</td>
<td>0,01955</td>
<td>0,139821</td>
<td>0,06253</td>
</tr>
<tr>
<td>B</td>
<td>6,20937</td>
<td>0,00985</td>
<td>0,092472</td>
<td>0,0443847</td>
</tr>
<tr>
<td>C</td>
<td>6,22592</td>
<td>0,00118</td>
<td>0,034511</td>
<td>0,0153623</td>
</tr>
<tr>
<td>D</td>
<td>6,20953</td>
<td>0,0074</td>
<td>0,0860233</td>
<td>0,0384708</td>
</tr>
<tr>
<td>E</td>
<td>6,20367</td>
<td>0,00513</td>
<td>0,071624</td>
<td>0,0320312</td>
</tr>
<tr>
<td>Total</td>
<td>6,2234</td>
<td>0,00779167</td>
<td>0,082704</td>
<td>0,0176541</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,12</td>
<td>6,48</td>
<td>0,36</td>
<td>6,17</td>
</tr>
<tr>
<td>B</td>
<td>6,08</td>
<td>6,34</td>
<td>0,26</td>
<td>6,15</td>
</tr>
<tr>
<td>C</td>
<td>6,18</td>
<td>6,26</td>
<td>0,08</td>
<td>6,21</td>
</tr>
<tr>
<td>D</td>
<td>6,13</td>
<td>6,33</td>
<td>0,2</td>
<td>6,15</td>
</tr>
<tr>
<td>E</td>
<td>6,14</td>
<td>6,12</td>
<td>0,18</td>
<td>6,15</td>
</tr>
<tr>
<td>Total</td>
<td>6,08</td>
<td>6,48</td>
<td>0,4</td>
<td>6,15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuart.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,31</td>
<td>0,14</td>
<td>0,754525</td>
<td>0,688784</td>
</tr>
<tr>
<td>B</td>
<td>6,25</td>
<td>0,1</td>
<td>-0,0613758</td>
<td>-0,0560281</td>
</tr>
<tr>
<td>C</td>
<td>6,26</td>
<td>0,05</td>
<td>-0,236836</td>
<td>-0,216201</td>
</tr>
<tr>
<td>D</td>
<td>6,27</td>
<td>0,12</td>
<td>0,754039</td>
<td>0,68834</td>
</tr>
<tr>
<td>E</td>
<td>6,21</td>
<td>0,06</td>
<td>1,29439</td>
<td>1,18161</td>
</tr>
<tr>
<td>Total</td>
<td>6,27</td>
<td>0,12</td>
<td>0,934174</td>
<td>1,90687</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,351659</td>
<td>0,16051</td>
<td>2,23001%</td>
<td>31,35</td>
</tr>
<tr>
<td>B</td>
<td>-0,43861</td>
<td>-0,200197</td>
<td>1,59818%</td>
<td>31,05</td>
</tr>
<tr>
<td>C</td>
<td>-1,52111</td>
<td>-0,634291</td>
<td>1,551737%</td>
<td>31,13</td>
</tr>
<tr>
<td>D</td>
<td>-1,68152</td>
<td>-0,767505</td>
<td>1,38528%</td>
<td>31,05</td>
</tr>
<tr>
<td>E</td>
<td>1,80101</td>
<td>0,822045</td>
<td>1,15448%</td>
<td>31,02</td>
</tr>
<tr>
<td>Total</td>
<td>1,46982</td>
<td>1,50013</td>
<td>1,41823%</td>
<td>155,6</td>
</tr>
</tbody>
</table>
Contraste de Varianza
Contraste C de Cochran: 0,453491 P-valor = 0,184134
Contraste de Bartlett: 1,40749 P-valor = 0,183679
Contraste de Hartley: 16,567
Test de Levene: 1,06443 P-valor = 0,399904

Tabla ANOVA para pH según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,01456</td>
<td>4</td>
<td>0,00364</td>
<td>0,42</td>
<td>0,7908</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>0,17244</td>
<td>20</td>
<td>0,008622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>0,187</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ÁCIDO GRASO C16:0

Resumen Estadístico para C16:0

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>17,56</td>
<td>18,02</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>17,196</td>
<td>16,8</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>17,724</td>
<td>17,87</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>16,792</td>
<td>16,8</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>18,194</td>
<td>18,93</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17,3517</td>
<td>8,93805</td>
<td>2,98966</td>
<td>1,33702</td>
</tr>
<tr>
<td>B</td>
<td>17,1538</td>
<td>1,84928</td>
<td>1,35988</td>
<td>0,608158</td>
</tr>
<tr>
<td>C</td>
<td>17,6169</td>
<td>4,62293</td>
<td>2,1501</td>
<td>0,961554</td>
</tr>
<tr>
<td>D</td>
<td>16,7353</td>
<td>2,34457</td>
<td>1,5312</td>
<td>0,684773</td>
</tr>
<tr>
<td>E</td>
<td>18,0188</td>
<td>8,02393</td>
<td>2,83265</td>
<td>1,2668</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13,66</td>
<td>21,37</td>
<td>7,71</td>
<td>15,68</td>
</tr>
<tr>
<td>B</td>
<td>15,64</td>
<td>19,22</td>
<td>3,58</td>
<td>16,56</td>
</tr>
<tr>
<td>C</td>
<td>14,82</td>
<td>19,86</td>
<td>5,04</td>
<td>16,41</td>
</tr>
<tr>
<td>D</td>
<td>14,63</td>
<td>18,73</td>
<td>4,1</td>
<td>16,22</td>
</tr>
<tr>
<td>E</td>
<td>14,97</td>
<td>22,12</td>
<td>7,15</td>
<td>15,94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>19,07</td>
<td>3,39</td>
<td>-0,110975</td>
<td>-0,101306</td>
</tr>
<tr>
<td>B</td>
<td>17,76</td>
<td>1,20</td>
<td>0,726404</td>
<td>0,663113</td>
</tr>
<tr>
<td>C</td>
<td>19,66</td>
<td>3,25</td>
<td>-0,40875</td>
<td>-0,37325</td>
</tr>
<tr>
<td>D</td>
<td>17,58</td>
<td>1,36</td>
<td>-0,293028</td>
<td>-0,267497</td>
</tr>
<tr>
<td>E</td>
<td>19,01</td>
<td>3,07</td>
<td>0,302349</td>
<td>0,276006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0,805668</td>
<td>-0,367736</td>
<td>17,0254%</td>
<td>87,8</td>
</tr>
<tr>
<td>B</td>
<td>0,382428</td>
<td>0,174554</td>
<td>7,08013%</td>
<td>85,98</td>
</tr>
<tr>
<td>C</td>
<td>-1,62671</td>
<td>-0,742488</td>
<td>12,131%</td>
<td>89,62</td>
</tr>
<tr>
<td>D</td>
<td>0,28804</td>
<td>0,133472</td>
<td>9,11862%</td>
<td>83,96</td>
</tr>
<tr>
<td>E</td>
<td>-0,774491</td>
<td>-0,353505</td>
<td>15,5692%</td>
<td>90,97</td>
</tr>
</tbody>
</table>

| Total | -0,35771 | -0,365086 | 12,1691% | 431,33|
Contraste de Varianza
Contraste C de Cochran: 0,346721 P-valor = 0,62594
Contraste de Bartlett: 1,2044 P-valor = 0,496135
Contraste de Hartley: 4,83326
Test de Levene: 0,8281 P-valor = 0,52288

Tabla ANOVA para C16:0 según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>5,6443</td>
<td>4</td>
<td>1,41108</td>
<td>0,27</td>
<td>0,8915</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>103,115</td>
<td>20</td>
<td>5,15575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>108,759</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPA

Resumen Estadístico para EPA

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>5,786</td>
<td>5,61</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>6,022</td>
<td>6,02</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>5,93</td>
<td>5,54</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>5,652</td>
<td>5,68</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>5,904</td>
<td>6,08</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>5,8588</td>
<td></td>
<td>5,88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5,65554</td>
<td>1,86588</td>
<td>1,36597</td>
<td>0,610881</td>
</tr>
<tr>
<td>B</td>
<td>5,99842</td>
<td>0,35162</td>
<td>0,592976</td>
<td>0,265187</td>
</tr>
<tr>
<td>C</td>
<td>5,82153</td>
<td>1,63215</td>
<td>1,27756</td>
<td>0,571341</td>
</tr>
<tr>
<td>D</td>
<td>5,58106</td>
<td>1,02557</td>
<td>1,0127</td>
<td>0,452895</td>
</tr>
<tr>
<td>E</td>
<td>5,73976</td>
<td>2,57483</td>
<td>1,60463</td>
<td>0,717611</td>
</tr>
<tr>
<td>Total</td>
<td>5,75747</td>
<td>1,25872</td>
<td>1,12193</td>
<td>0,224385</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4,23</td>
<td>7,25</td>
<td>3,02</td>
<td>4,73</td>
</tr>
<tr>
<td>B</td>
<td>5,19</td>
<td>6,84</td>
<td>1,65</td>
<td>5,88</td>
</tr>
<tr>
<td>C</td>
<td>4,37</td>
<td>7,77</td>
<td>3,4</td>
<td>5,46</td>
</tr>
<tr>
<td>D</td>
<td>4,67</td>
<td>7,09</td>
<td>2,42</td>
<td>4,72</td>
</tr>
<tr>
<td>E</td>
<td>4,29</td>
<td>8,38</td>
<td>4,09</td>
<td>4,68</td>
</tr>
<tr>
<td>Total</td>
<td>4,23</td>
<td>8,38</td>
<td>4,15</td>
<td>4,73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7,11</td>
<td>2,38</td>
<td>0,0831134</td>
<td>0,6758718</td>
</tr>
<tr>
<td>B</td>
<td>6,18</td>
<td>0,3</td>
<td>-0,0549673</td>
<td>-0,0501781</td>
</tr>
<tr>
<td>C</td>
<td>6,51</td>
<td>1,05</td>
<td>0,492579</td>
<td>0,489661</td>
</tr>
<tr>
<td>D</td>
<td>6,1</td>
<td>1,38</td>
<td>0,524333</td>
<td>0,478649</td>
</tr>
<tr>
<td>E</td>
<td>6,09</td>
<td>1,41</td>
<td>0,923055</td>
<td>0,84263</td>
</tr>
<tr>
<td>Total</td>
<td>6,51</td>
<td>1,78</td>
<td>0,406924</td>
<td>0,83063</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2,69589</td>
<td>-1,2305</td>
<td>23,6082%</td>
<td>28,93</td>
</tr>
<tr>
<td>B</td>
<td>1,38163</td>
<td>0,630626</td>
<td>9,84682%</td>
<td>30,11</td>
</tr>
<tr>
<td>C</td>
<td>0,244352</td>
<td>0,11531</td>
<td>21,544%</td>
<td>29,65</td>
</tr>
<tr>
<td>D</td>
<td>-0,868505</td>
<td>-0,396416</td>
<td>17,9176%</td>
<td>28,26</td>
</tr>
<tr>
<td>E</td>
<td>0,789294</td>
<td>0,360262</td>
<td>27,1787%</td>
<td>29,52</td>
</tr>
<tr>
<td>Total</td>
<td>-0,41347</td>
<td>-0,421942</td>
<td>19,1494%</td>
<td>146,47</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,345612 P-valor = 0,633
Contraste de Bartlett: 1,21033 P-valor = 0,48234
Contraste de Hartley: 7,32276
Test de Levene: 0,739059 P-valor = 0,576376

Tabla ANOVA para EPA según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>GL</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,409064</td>
<td>4</td>
<td>0,102266</td>
<td>0,07</td>
<td>0,9907</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>29,8002</td>
<td>20</td>
<td>1,49001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>30,2093</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DHA

Resumen Estadístico para DHA

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>21,522</td>
<td>19,34</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>21,016</td>
<td>20,01</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>20,954</td>
<td>20,35</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>20,186</td>
<td>19,1</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>22,492</td>
<td>21,61</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20,5966</td>
<td>47,0038</td>
<td>6,8569</td>
<td>3,06607</td>
</tr>
<tr>
<td>B</td>
<td>20,7487</td>
<td>14,9197</td>
<td>3,86261</td>
<td>1,72741</td>
</tr>
<tr>
<td>C</td>
<td>20,2649</td>
<td>37,5199</td>
<td>6,12535</td>
<td>2,73934</td>
</tr>
<tr>
<td>D</td>
<td>19,313</td>
<td>49,4218</td>
<td>7,03007</td>
<td>3,14394</td>
</tr>
<tr>
<td>E</td>
<td>21,2934</td>
<td>79,5681</td>
<td>8,9201</td>
<td>3,98919</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12,69</td>
<td>28,5</td>
<td>15,81</td>
<td>18,62</td>
</tr>
<tr>
<td>B</td>
<td>17,4</td>
<td>26,99</td>
<td>9,59</td>
<td>18,22</td>
</tr>
<tr>
<td>C</td>
<td>13,6</td>
<td>30,52</td>
<td>16,92</td>
<td>18,96</td>
</tr>
<tr>
<td>D</td>
<td>13,23</td>
<td>31,66</td>
<td>18,43</td>
<td>16,17</td>
</tr>
<tr>
<td>E</td>
<td>14,91</td>
<td>37,45</td>
<td>22,54</td>
<td>16,49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28,46</td>
<td>9,84</td>
<td>-0,0664731</td>
<td>-0,0590392</td>
</tr>
<tr>
<td>B</td>
<td>21,34</td>
<td>4,44</td>
<td>1,05602</td>
<td>0,964012</td>
</tr>
<tr>
<td>C</td>
<td>21,34</td>
<td>2,38</td>
<td>0,851317</td>
<td>0,777142</td>
</tr>
<tr>
<td>D</td>
<td>20,77</td>
<td>4,6</td>
<td>1,32896</td>
<td>1,21317</td>
</tr>
<tr>
<td>E</td>
<td>22,00</td>
<td>5,51</td>
<td>1,58144</td>
<td>1,44365</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1,85214</td>
<td>-0,845381</td>
<td>31,8555%</td>
<td>107,61</td>
</tr>
<tr>
<td>B</td>
<td>0,485779</td>
<td>0,221727</td>
<td>18,3794%</td>
<td>105,08</td>
</tr>
<tr>
<td>C</td>
<td>0,93419</td>
<td>0,93419</td>
<td>29,2329%</td>
<td>104,77</td>
</tr>
<tr>
<td>D</td>
<td>2,20221</td>
<td>1,00517</td>
<td>34,8264%</td>
<td>100,93</td>
</tr>
<tr>
<td>E</td>
<td>2,79268</td>
<td>1,27468</td>
<td>39,659%</td>
<td>112,46</td>
</tr>
</tbody>
</table>

| Individuo | 0,557693 | 0,569193 | 29,2873% | 530,85 |

111
Contraste de Varianza

Contraste C de Cochran: 0,348321 P-valor = 0,615866
Contraste de Bartlett: 1,1398 P-valor = 0,666413
Contraste de Hartley: 5,33308
Test de Levene: 0,280041 P-valor = 0,887412

Tabla ANOVA para DHA según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>14,4487</td>
<td>4</td>
<td>3,61217</td>
<td>0,08</td>
<td>0,9879</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>913,734</td>
<td>20</td>
<td>45,6867</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>928,182</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ÍNDICE POLIENOS

Resumen Estadístico para Índice Polienes

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>1,536</td>
<td>1,49</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>1,576</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>1,502</td>
<td>1,49</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>1,52</td>
<td>1,53</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>1,524</td>
<td>1,46</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>1,5316</td>
<td>1,49</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,51402</td>
<td>0,08833</td>
<td>0,297204</td>
<td>0,132914</td>
</tr>
<tr>
<td>B</td>
<td>1,56003</td>
<td>0,06848</td>
<td>0,261687</td>
<td>0,11703</td>
</tr>
<tr>
<td>C</td>
<td>1,4812</td>
<td>0,08257</td>
<td>0,283735</td>
<td>0,128507</td>
</tr>
<tr>
<td>D</td>
<td>1,49189</td>
<td>0,1163</td>
<td>0,34028</td>
<td>0,152512</td>
</tr>
<tr>
<td>E</td>
<td>1,50082</td>
<td>0,10033</td>
<td>0,316749</td>
<td>0,141655</td>
</tr>
<tr>
<td>Total</td>
<td>1,50935</td>
<td>0,076639</td>
<td>0,276837</td>
<td>0,053675</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,24</td>
<td>1,98</td>
<td>0,74</td>
<td>1,31</td>
</tr>
<tr>
<td>B</td>
<td>1,35</td>
<td>2,01</td>
<td>0,66</td>
<td>1,41</td>
</tr>
<tr>
<td>C</td>
<td>1,21</td>
<td>1,95</td>
<td>0,74</td>
<td>1,33</td>
</tr>
<tr>
<td>D</td>
<td>1,23</td>
<td>2,07</td>
<td>0,84</td>
<td>1,24</td>
</tr>
<tr>
<td>E</td>
<td>1,28</td>
<td>2,07</td>
<td>0,79</td>
<td>1,33</td>
</tr>
<tr>
<td>Total</td>
<td>1,21</td>
<td>2,07</td>
<td>0,86</td>
<td>1,31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,66</td>
<td>0,35</td>
<td>0,823115</td>
<td>0,751397</td>
</tr>
<tr>
<td>B</td>
<td>1,61</td>
<td>0,2</td>
<td>1,51665</td>
<td>1,38451</td>
</tr>
<tr>
<td>C</td>
<td>1,56</td>
<td>0,26</td>
<td>1,00045</td>
<td>0,913283</td>
</tr>
<tr>
<td>D</td>
<td>1,53</td>
<td>0,29</td>
<td>1,26105</td>
<td>1,15117</td>
</tr>
<tr>
<td>E</td>
<td>1,48</td>
<td>0,15</td>
<td>1,84338</td>
<td>1,68277</td>
</tr>
<tr>
<td>Total</td>
<td>1,61</td>
<td>0,3</td>
<td>0,899692</td>
<td>1,83649</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0,0873451</td>
<td>-0,0398674</td>
<td>19,3492%</td>
<td>7,68</td>
</tr>
<tr>
<td>B</td>
<td>2,36376</td>
<td>1,0789</td>
<td>16,6045%</td>
<td>7,88</td>
</tr>
<tr>
<td>C</td>
<td>1,0257</td>
<td>0,468164</td>
<td>19,1312%</td>
<td>7,51</td>
</tr>
<tr>
<td>D</td>
<td>1,6784</td>
<td>0,766082</td>
<td>22,436%</td>
<td>7,6</td>
</tr>
<tr>
<td>E</td>
<td>3,65479</td>
<td>1,66817</td>
<td>20,7841%</td>
<td>7,62</td>
</tr>
<tr>
<td>Total</td>
<td>-0,339065</td>
<td>-0,346057</td>
<td>18,0751%</td>
<td>38,29</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,255038 P-valor = 1,0
Contraste de Bartlett: 1,01602 P-valor = 0,990512
Contraste de Hartley: 1,69831
Test de Levene: 0,0554659 P-valor = 0,993801

Tabla ANOVA para Índice Polienos según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,015296</td>
<td>4</td>
<td>0,003824</td>
<td>0,04</td>
<td>0,9964</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>1,82404</td>
<td>20</td>
<td>0,091202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>1,83934</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dieta III

ACEITE

Resumen Estadístico para Aceite

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>12,8</td>
<td>13,43</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>12,088</td>
<td>11,84</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>13,496</td>
<td>12,98</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>12,832</td>
<td>11,81</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>14,216</td>
<td>13,06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12,6818</td>
<td>3,6837</td>
<td>1,9193</td>
<td>0,858336</td>
</tr>
<tr>
<td>B</td>
<td>11,6387</td>
<td>15,2829</td>
<td>3,9033</td>
<td>1,74831</td>
</tr>
<tr>
<td>C</td>
<td>13,4279</td>
<td>2,41928</td>
<td>1,5554</td>
<td>0,695998</td>
</tr>
<tr>
<td>D</td>
<td>12,415</td>
<td>14,2309</td>
<td>3,77238</td>
<td>1,68706</td>
</tr>
<tr>
<td>E</td>
<td>13,7328</td>
<td>17,6168</td>
<td>4,19724</td>
<td>1,87706</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10,43</td>
<td>15,01</td>
<td>4,58</td>
<td>11,2</td>
</tr>
<tr>
<td>B</td>
<td>8,83</td>
<td>18,46</td>
<td>9,63</td>
<td>8,96</td>
</tr>
<tr>
<td>C</td>
<td>12,26</td>
<td>15,98</td>
<td>3,72</td>
<td>12,28</td>
</tr>
<tr>
<td>D</td>
<td>9,02</td>
<td>18,48</td>
<td>9,46</td>
<td>10,29</td>
</tr>
<tr>
<td>E</td>
<td>9,64</td>
<td>19,99</td>
<td>10,35</td>
<td>11,47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13,93</td>
<td>2,73</td>
<td>-0,290026</td>
<td>-0,264757</td>
</tr>
<tr>
<td>B</td>
<td>12,35</td>
<td>3,39</td>
<td>1,3497</td>
<td>1,4321</td>
</tr>
<tr>
<td>C</td>
<td>13,98</td>
<td>1,7</td>
<td>1,28629</td>
<td>1,17422</td>
</tr>
<tr>
<td>D</td>
<td>14,56</td>
<td>4,27</td>
<td>0,872723</td>
<td>0,796684</td>
</tr>
<tr>
<td>E</td>
<td>16,92</td>
<td>5,45</td>
<td>0,530815</td>
<td>0,484566</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2,12792</td>
<td>-0,97126</td>
<td>14,9945%</td>
<td>64,0</td>
</tr>
<tr>
<td>B</td>
<td>1,93811</td>
<td>0,884624</td>
<td>32,3406%</td>
<td>60,44</td>
</tr>
<tr>
<td>C</td>
<td>1,12325</td>
<td>0,512693</td>
<td>11,5249%</td>
<td>67,48</td>
</tr>
<tr>
<td>D</td>
<td>-0,0962123</td>
<td>-0,0439147</td>
<td>29,3982%</td>
<td>64,16</td>
</tr>
<tr>
<td>E</td>
<td>-1,30571</td>
<td>-0,595972</td>
<td>29,5248%</td>
<td>71,08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,03576</td>
</tr>
<tr>
<td>B</td>
<td>-0,13856</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,330935 P-valor = 0,732336
Contraste de Bartlett: 1,31992 P-valor = 0,282531
Contraste de Hartley: 7,28185
Test de Levene: 0,87767 P-valor = 0,494778

Tabla ANOVA para Aceite según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>12,9366</td>
<td>4</td>
<td>3,23414</td>
<td>0,30</td>
<td>0,8720</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>212,934</td>
<td>20</td>
<td>10,6467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>225,871</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALFA TOCOFEROL

Resumen Estadístico para Alpha Toc

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>216,496</td>
<td>181,37</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>188,474</td>
<td>166,31</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>192,944</td>
<td>171,93</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>199,644</td>
<td>236,97</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>223,046</td>
<td>211,04</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>204,121</td>
<td>171,93</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>197,809</td>
<td>10831,3</td>
<td>104,074</td>
<td>46,5431</td>
</tr>
<tr>
<td>B</td>
<td>180,839</td>
<td>4550,39</td>
<td>67,4566</td>
<td>30,1675</td>
</tr>
<tr>
<td>C</td>
<td>166,304</td>
<td>14349,4</td>
<td>119,789</td>
<td>53,5712</td>
</tr>
<tr>
<td>D</td>
<td>176,405</td>
<td>10283,9</td>
<td>101,409</td>
<td>45,3517</td>
</tr>
<tr>
<td>E</td>
<td>208,945</td>
<td>7403,9</td>
<td>86,0459</td>
<td>38,4809</td>
</tr>
<tr>
<td>Total</td>
<td>185,437</td>
<td>8090,87</td>
<td>89,9493</td>
<td>17,9899</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>126,49</td>
<td>188,474</td>
<td>162,98</td>
<td>157,28</td>
</tr>
<tr>
<td>B</td>
<td>92,12</td>
<td>199,644</td>
<td>107,52</td>
<td>100,25</td>
</tr>
<tr>
<td>C</td>
<td>86,27</td>
<td>223,046</td>
<td>136,77</td>
<td>105,15</td>
</tr>
<tr>
<td>D</td>
<td>86,27</td>
<td>223,046</td>
<td>136,77</td>
<td>105,15</td>
</tr>
<tr>
<td>E</td>
<td>118,96</td>
<td>223,046</td>
<td>104,08</td>
<td>100,25</td>
</tr>
<tr>
<td>Total</td>
<td>86,27</td>
<td>223,046</td>
<td>296,77</td>
<td>128,97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>279,71</td>
<td>150,74</td>
<td>0,793673</td>
<td>0,724521</td>
</tr>
<tr>
<td>B</td>
<td>188,34</td>
<td>12,06</td>
<td>2,11583</td>
<td>1,93148</td>
</tr>
<tr>
<td>C</td>
<td>223,41</td>
<td>123,16</td>
<td>1,17738</td>
<td>1,0748</td>
</tr>
<tr>
<td>D</td>
<td>243,58</td>
<td>138,43</td>
<td>-0,0538672</td>
<td>-0,0491738</td>
</tr>
<tr>
<td>E</td>
<td>301,04</td>
<td>135,85</td>
<td>0,0227979</td>
<td>0,0208115</td>
</tr>
<tr>
<td>Total</td>
<td>279,71</td>
<td>150,74</td>
<td>0,525128</td>
<td>1,07191</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1,17458</td>
<td>-0,536121</td>
<td>48,0718%</td>
<td>1082,48</td>
</tr>
<tr>
<td>B</td>
<td>4,5984</td>
<td>2,09887</td>
<td>35,7909%</td>
<td>942,37</td>
</tr>
<tr>
<td>C</td>
<td>1,13429</td>
<td>0,517728</td>
<td>62,0848%</td>
<td>964,72</td>
</tr>
<tr>
<td>D</td>
<td>-2,0011</td>
<td>-0,913374</td>
<td>50,79511%</td>
<td>998,22</td>
</tr>
<tr>
<td>E</td>
<td>-2,9071</td>
<td>-1,048558</td>
<td>38,577%</td>
<td>1115,23</td>
</tr>
<tr>
<td>Total</td>
<td>-0,89034</td>
<td>-0,9087</td>
<td>44,0667%</td>
<td>5103,02</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,302609 P-valor = 0,957011
Contraste de Bartlett: 1,07336 P-valor = 0,863553
Contraste de Hartley: 3,15344
Test de Levene: 0,436579 P-valor = 0,780636

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>4505,47</td>
<td>4</td>
<td>1126,37</td>
<td>0,12</td>
<td>0,9742</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>189675,0</td>
<td>20</td>
<td>9483,77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>194181,0</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BETA TOCOFEROL

Resumen Estadístico para Beta Toc

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>0,43</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>0,086</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>C</td>
<td>0,9245</td>
<td>0,961509</td>
<td>0,43</td>
<td>0,43</td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>0,1849</td>
<td>0,43</td>
<td>0,086</td>
<td>0,086</td>
</tr>
</tbody>
</table>

Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Minimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>C</td>
<td>0,0</td>
<td>2,15</td>
<td>2,15</td>
<td>0,0</td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>0,0</td>
<td>2,15</td>
<td>2,15</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>C</td>
<td>0,0</td>
<td>0,0</td>
<td>2,23607</td>
<td>2,04124</td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>0,0</td>
<td>0,0</td>
<td>5,0</td>
<td>10,2062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>C</td>
<td>2,28218</td>
<td>%</td>
<td>223,607%</td>
<td>2,15</td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>%</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>25,0</td>
<td>25,5155</td>
<td>500,0%</td>
<td>2,15</td>
</tr>
</tbody>
</table>
No se pueden ejecutar los contrastes de varianzas.

Contraste de Kruskal-Wallis para Beta Toc según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>12,5</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>12,5</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>15,0</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>12,5</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>12,5</td>
</tr>
</tbody>
</table>

Estadístico = 4,0 P-valor = 0,406006

GAMMA TOCOFEROL

Resumen Estadístico para Gamma Toc

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>16,394</td>
<td>14,7</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>17,482</td>
<td>16,65</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>17,758</td>
<td>14,85</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>16,014</td>
<td>13,98</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>19,73</td>
<td>17,19</td>
<td></td>
</tr>
</tbody>
</table>

Total 25 17,476 14,85 |

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13,945</td>
<td>130,879</td>
<td>11,4402</td>
<td>5,11623</td>
</tr>
<tr>
<td>B</td>
<td>16,6646</td>
<td>37,8673</td>
<td>6,15364</td>
<td>2,75199</td>
</tr>
<tr>
<td>C</td>
<td>15,736</td>
<td>118,355</td>
<td>10,8791</td>
<td>4,86529</td>
</tr>
<tr>
<td>D</td>
<td>14,9308</td>
<td>43,9666</td>
<td>6,63999</td>
<td>2,96636</td>
</tr>
<tr>
<td>E</td>
<td>17,1634</td>
<td>123,559</td>
<td>11,1157</td>
<td>4,9711</td>
</tr>
</tbody>
</table>

Total 15,6444 77,5404 8,8057 1,76114 |

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7,93</td>
<td>35,97</td>
<td>28,14</td>
<td>8,52</td>
</tr>
<tr>
<td>B</td>
<td>11,31</td>
<td>26,73</td>
<td>15,42</td>
<td>12,85</td>
</tr>
<tr>
<td>C</td>
<td>9,89</td>
<td>36,52</td>
<td>26,63</td>
<td>10,67</td>
</tr>
<tr>
<td>D</td>
<td>8,22</td>
<td>26,03</td>
<td>17,81</td>
<td>13,6</td>
</tr>
<tr>
<td>E</td>
<td>9,22</td>
<td>33,17</td>
<td>23,95</td>
<td>9,62</td>
</tr>
</tbody>
</table>

Total 7,83 36,52 28,69 10,67 |

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14,95</td>
<td>6,43</td>
<td>1,7748</td>
<td>1,62017</td>
</tr>
<tr>
<td>B</td>
<td>19,87</td>
<td>7,02</td>
<td>0,839489</td>
<td>0,766345</td>
</tr>
<tr>
<td>C</td>
<td>16,86</td>
<td>6,19</td>
<td>1,85616</td>
<td>1,69443</td>
</tr>
<tr>
<td>D</td>
<td>18,24</td>
<td>4,64</td>
<td>0,742928</td>
<td>0,77622</td>
</tr>
<tr>
<td>E</td>
<td>29,45</td>
<td>19,83</td>
<td>0,344438</td>
<td>0,314427</td>
</tr>
</tbody>
</table>

Total 19,87 9,2 1,03144 2,10542 |

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,39076</td>
<td>1,54766</td>
<td>69,7831%</td>
<td>81,97</td>
</tr>
<tr>
<td>B</td>
<td>0,0713851</td>
<td>0,0325827</td>
<td>35,1999%</td>
<td>87,41</td>
</tr>
<tr>
<td>C</td>
<td>3,63102</td>
<td>1,65733</td>
<td>61,2632%</td>
<td>88,79</td>
</tr>
<tr>
<td>D</td>
<td>0,930824</td>
<td>0,424861</td>
<td>41,42%</td>
<td>80,07</td>
</tr>
<tr>
<td>E</td>
<td>-2,73981</td>
<td>-1,25055</td>
<td>56,3391%</td>
<td>98,65</td>
</tr>
</tbody>
</table>

Total -0,0210466 -0,0214806 50,3886% 436,89
Contraste de Varianza

Contraste de Cochran: 0,287863 P-valor = 1,0
Contraste de Bartlett: 1,14285 P-valor = 0,657609
Contraste de Hartley: 3,45626
Test de Levene: 0,364802 P-valor = 0,83075

Contraste de Kruskal-Wallis para Gamma Toc según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>10,8</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>14,4</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>13,4</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>12,2</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>14,2</td>
</tr>
</tbody>
</table>

Estadístico = 0,834462 P-valor = 0,933769

DELTA TOCOSOROL

Resumen Estadístico para Delta Toc

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>1,18</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>0,828</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>1,778</td>
<td>1,33</td>
<td>0,0</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>4,096</td>
<td>1,37</td>
<td>0,0</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>1,296</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Total 25 1,8356 0,0 0,0

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4,1072</td>
<td>2,02662</td>
<td>0,90633</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3,8602</td>
<td>1,20811</td>
<td>0,540281</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>44,1503</td>
<td>6,64457</td>
<td>2,97154</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4,14333</td>
<td>2,03552</td>
<td>0,910311</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>11,0179</td>
<td>3,31933</td>
<td>0,663865</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15,72</td>
<td>15,72</td>
<td>0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,32</td>
<td>1,22</td>
<td>1,89948</td>
<td>1,73398</td>
</tr>
<tr>
<td>B</td>
<td>1,48</td>
<td>1,48</td>
<td>1,11602</td>
<td>1,01878</td>
</tr>
<tr>
<td>C</td>
<td>3,39</td>
<td>3,39</td>
<td>0,350125</td>
<td>0,319619</td>
</tr>
<tr>
<td>D</td>
<td>1,83</td>
<td>1,83</td>
<td>1,54893</td>
<td>1,41397</td>
</tr>
<tr>
<td>E</td>
<td>2,66</td>
<td>2,66</td>
<td>3,29554</td>
<td>6,727</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,55062</td>
<td>1,62063</td>
<td>171,748%</td>
<td>5,9</td>
</tr>
<tr>
<td>B</td>
<td>-0,456672</td>
<td>-0,208441</td>
<td>145,907%</td>
<td>4,14</td>
</tr>
<tr>
<td>C</td>
<td>-2,74654</td>
<td>-1,25362</td>
<td>107,981%</td>
<td>8,89</td>
</tr>
<tr>
<td>D</td>
<td>4,10408</td>
<td>1,87325</td>
<td>162,221%</td>
<td>20,48</td>
</tr>
<tr>
<td>E</td>
<td>1,83648</td>
<td>0,838236</td>
<td>157,062%</td>
<td>6,48</td>
</tr>
</tbody>
</table>

Total 13,1036 13,38 180,831% 45,89
Contraste de Varianza

Contraste de Cochran: 0,767213 P-valor = 0,000307753
Contraste de Bartlett: 2,1864 P-valor = 0,00661687
Contraste de Hartley: 30,2499
Test de Levene: 0,778845 P-valor = 0,552003

Contraste de Kruskal-Wallis para Delta Toc según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>11,8</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>11,4</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>14,4</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>15,0</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>12,4</td>
</tr>
</tbody>
</table>

Estadístico = 1,10769 P-valor = 0,89305

ÍNDICE PERÓXIDOS

Resumen Estadístico para Índice Peróxidos

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>7,814</td>
<td>9,42</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>8,324</td>
<td>9,87</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>5,864</td>
<td>5,68</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>6,71</td>
<td>7,31</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>6,704</td>
<td>8,91</td>
<td></td>
</tr>
</tbody>
</table>

| Total | 25 | 7,0832| 8,75 | 9,87 |

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,88018</td>
<td>15,8335</td>
<td>3,97914</td>
<td>1,77952</td>
</tr>
<tr>
<td>B</td>
<td>7,5707</td>
<td>13,8484</td>
<td>3,72134</td>
<td>1,66423</td>
</tr>
<tr>
<td>C</td>
<td>4,98316</td>
<td>11,7645</td>
<td>3,42316</td>
<td>1,53267</td>
</tr>
<tr>
<td>D</td>
<td>6,10739</td>
<td>9,08751</td>
<td>3,01461</td>
<td>1,34817</td>
</tr>
<tr>
<td>E</td>
<td>5,45045</td>
<td>16,2396</td>
<td>4,02904</td>
<td>1,8022</td>
</tr>
</tbody>
</table>

| Total | 6,12781 | 11,9265 | 3,45347 | 0,690694 |

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,28</td>
<td>12,59</td>
<td>9,31</td>
<td>4,09</td>
</tr>
<tr>
<td>B</td>
<td>4,34</td>
<td>12,47</td>
<td>8,13</td>
<td>4,43</td>
</tr>
<tr>
<td>C</td>
<td>2,32</td>
<td>9,87</td>
<td>7,55</td>
<td>2,7</td>
</tr>
<tr>
<td>D</td>
<td>3,51</td>
<td>9,9</td>
<td>6,39</td>
<td>3,64</td>
</tr>
<tr>
<td>E</td>
<td>2,01</td>
<td>10,84</td>
<td>8,83</td>
<td>2,75</td>
</tr>
</tbody>
</table>

| Total | 2,01 | 12,59 | 10,58 | 3,64 |

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9,69</td>
<td>5,64</td>
<td>-0,166427</td>
<td>-0,151926</td>
</tr>
<tr>
<td>B</td>
<td>10,51</td>
<td>6,09</td>
<td>-0,290123</td>
<td>-0,272147</td>
</tr>
<tr>
<td>C</td>
<td>8,75</td>
<td>6,05</td>
<td>0,125587</td>
<td>0,114645</td>
</tr>
<tr>
<td>D</td>
<td>9,19</td>
<td>5,55</td>
<td>-0,209452</td>
<td>-0,191203</td>
</tr>
<tr>
<td>E</td>
<td>9,01</td>
<td>6,26</td>
<td>-0,405187</td>
<td>-0,415527</td>
</tr>
</tbody>
</table>

| Total | 9,87 | 6,23 | -0,0820805 | -0,167546 |

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2,2448</td>
<td>-1,02461</td>
<td>50,9232%</td>
<td>39,07</td>
</tr>
<tr>
<td>B</td>
<td>-2,74735</td>
<td>-1,25399</td>
<td>44,7062%</td>
<td>41,62</td>
</tr>
<tr>
<td>C</td>
<td>-2,70043</td>
<td>-1,23257</td>
<td>58,4441%</td>
<td>29,32</td>
</tr>
<tr>
<td>D</td>
<td>-2,92674</td>
<td>-1,33587</td>
<td>44,9271%</td>
<td>33,55</td>
</tr>
<tr>
<td>E</td>
<td>-2,90709</td>
<td>-1,3269</td>
<td>60,1109%</td>
<td>33,52</td>
</tr>
</tbody>
</table>

| Total | -1,52881 | -1,56033 | 48,7558% | 177,08|

118
Contraste de Varianza

Contraste C de Cochran: 0,243272 P-valor = 1,0
Contraste de Hartley: 1,78696 P-valor = 0,99437

Tabla ANOVA para Índice Peróxidos según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>19,2159</td>
<td>4</td>
<td>4,80397</td>
<td>0,36</td>
<td>0,8342</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>267,019</td>
<td>20</td>
<td>13,351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>286,235</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VALOR p-ANISIDINA

Resumen Estadístico para p Anisidina

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>4,254</td>
<td>2,32</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>4,426</td>
<td>2,42</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>4,598</td>
<td>3,06</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>4,56</td>
<td>3,46</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>4,934</td>
<td>4,22</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>4,554</td>
<td>3,06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,42988</td>
<td>9,41108</td>
<td>3,06775</td>
<td>1,37194</td>
</tr>
<tr>
<td>B</td>
<td>3,69316</td>
<td>8,87808</td>
<td>2,97961</td>
<td>1,33252</td>
</tr>
<tr>
<td>C</td>
<td>3,76356</td>
<td>9,62497</td>
<td>3,10241</td>
<td>1,38744</td>
</tr>
<tr>
<td>D</td>
<td>3,78064</td>
<td>7,85245</td>
<td>2,80222</td>
<td>1,25319</td>
</tr>
<tr>
<td>E</td>
<td>4,19878</td>
<td>8,6883</td>
<td>2,94768</td>
<td>1,31824</td>
</tr>
<tr>
<td>Total</td>
<td>3,76524</td>
<td>7,46189</td>
<td>2,73165</td>
<td>0,546329</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,66</td>
<td>8,29</td>
<td>6,63</td>
<td>2,18</td>
</tr>
<tr>
<td>B</td>
<td>2,12</td>
<td>8,39</td>
<td>6,27</td>
<td>2,32</td>
</tr>
<tr>
<td>C</td>
<td>1,61</td>
<td>8,17</td>
<td>6,56</td>
<td>2,43</td>
</tr>
<tr>
<td>D</td>
<td>1,42</td>
<td>8,09</td>
<td>6,67</td>
<td>2,34</td>
</tr>
<tr>
<td>E</td>
<td>2,05</td>
<td>8,15</td>
<td>6,1</td>
<td>2,34</td>
</tr>
<tr>
<td>Total</td>
<td>1,42</td>
<td>8,39</td>
<td>6,97</td>
<td>2,32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercu.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,82</td>
<td>4,64</td>
<td>0,707596</td>
<td>0,645944</td>
</tr>
<tr>
<td>B</td>
<td>6,88</td>
<td>4,56</td>
<td>0,746451</td>
<td>0,691413</td>
</tr>
<tr>
<td>C</td>
<td>7,72</td>
<td>5,29</td>
<td>0,495359</td>
<td>0,452199</td>
</tr>
<tr>
<td>D</td>
<td>6,59</td>
<td>4,25</td>
<td>0,197768</td>
<td>0,180537</td>
</tr>
<tr>
<td>E</td>
<td>7,91</td>
<td>5,57</td>
<td>0,289791</td>
<td>0,264541</td>
</tr>
<tr>
<td>Total</td>
<td>7,72</td>
<td>5,4</td>
<td>0,350715</td>
<td>0,715893</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2,54567</td>
<td>-1,16193</td>
<td>72,1144%</td>
<td>21,27</td>
</tr>
<tr>
<td>B</td>
<td>-2,49198</td>
<td>-1,13743</td>
<td>67,3206%</td>
<td>22,13</td>
</tr>
<tr>
<td>C</td>
<td>-3,07236</td>
<td>-1,40233</td>
<td>67,4731%</td>
<td>22,99</td>
</tr>
<tr>
<td>D</td>
<td>-2,04489</td>
<td>-0,93336</td>
<td>61,4522%</td>
<td>22,8</td>
</tr>
<tr>
<td>E</td>
<td>-3,03074</td>
<td>-1,38334</td>
<td>59,7422%</td>
<td>24,67</td>
</tr>
<tr>
<td>Total</td>
<td>-1,78312</td>
<td>-1,81989</td>
<td>59,9782%</td>
<td>113,86</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,216508 P-valor = 1,0
Contraste de Bartlett: 1,00251 P-valor = 0,999744
Contraste de Hartley: 1,22573
Test de Levene: 0,0078042 P-valor = 0,999868

Tabla ANOVA para p Anisidina según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>GL</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>1,26378</td>
<td>4</td>
<td>0,315944</td>
<td>0,04</td>
<td>0,9974</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>177,822</td>
<td>20</td>
<td>8,89108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>179,085</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NBVT

Resumen Estadístico para NBVT

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>8,66</td>
<td>9,4</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>5,56</td>
<td>6,6</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>7,66</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>6,12</td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>6,78</td>
<td>7,4</td>
<td>8,1</td>
</tr>
</tbody>
</table>

Total 25 6,956 7,4

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8,32134</td>
<td>6,223</td>
<td>2,49459</td>
<td>1,11562</td>
</tr>
<tr>
<td>B</td>
<td>4,90093</td>
<td>7,333</td>
<td>2,70785</td>
<td>1,21103</td>
</tr>
<tr>
<td>C</td>
<td>7,64147</td>
<td>0,373</td>
<td>0,61073</td>
<td>0,27313</td>
</tr>
<tr>
<td>D</td>
<td>5,82313</td>
<td>4,652</td>
<td>2,15685</td>
<td>0,964572</td>
</tr>
<tr>
<td>E</td>
<td>6,52814</td>
<td>3,347</td>
<td>1,82948</td>
<td>0,818169</td>
</tr>
</tbody>
</table>

Total 6,52708 4,9209 2,21831 0,443662

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4,9</td>
<td>11,0</td>
<td>6,1</td>
<td>7,5</td>
</tr>
<tr>
<td>B</td>
<td>2,0</td>
<td>8,5</td>
<td>6,5</td>
<td>3,5</td>
</tr>
<tr>
<td>C</td>
<td>7,1</td>
<td>8,7</td>
<td>1,6</td>
<td>7,4</td>
</tr>
<tr>
<td>D</td>
<td>3,7</td>
<td>9,3</td>
<td>5,6</td>
<td>4,7</td>
</tr>
<tr>
<td>E</td>
<td>3,7</td>
<td>8,1</td>
<td>4,4</td>
<td>6,6</td>
</tr>
</tbody>
</table>

Total 2,0 11,0 9,0 6,0

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10,5</td>
<td>3,0</td>
<td>-0,946678</td>
<td>-0,864195</td>
</tr>
<tr>
<td>B</td>
<td>7,2</td>
<td>3,7</td>
<td>-0,480758</td>
<td>-0,43887</td>
</tr>
<tr>
<td>C</td>
<td>7,6</td>
<td>0,2</td>
<td>1,69619</td>
<td>1,5484</td>
</tr>
<tr>
<td>D</td>
<td>6,9</td>
<td>2,2</td>
<td>0,64759</td>
<td>0,591166</td>
</tr>
<tr>
<td>E</td>
<td>8,1</td>
<td>1,5</td>
<td>-1,65936</td>
<td>-1,51478</td>
</tr>
</tbody>
</table>

Total 8,1 2,1 -0,424415 -0,866333

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0,142604</td>
<td>-0,0650894</td>
<td>28,8059%</td>
<td>43,3</td>
</tr>
<tr>
<td>B</td>
<td>-1,91552</td>
<td>-0,874313</td>
<td>48,7042%</td>
<td>27,8</td>
</tr>
<tr>
<td>C</td>
<td>3,44119</td>
<td>1,57068</td>
<td>7,97507%</td>
<td>38,3</td>
</tr>
<tr>
<td>D</td>
<td>0,143894</td>
<td>0,0656782</td>
<td>35,2426%</td>
<td>30,6</td>
</tr>
<tr>
<td>E</td>
<td>2,73569</td>
<td>1,24867</td>
<td>26,9835%</td>
<td>33,9</td>
</tr>
</tbody>
</table>

Total -0,043719 -0,0466205 31,8906% 173,9
Contraste de Varianza
Contraste C de Cochran: 0,334413 P-valor = 0,707789
Contraste de Hartlett: 1,43672 P-valor = 0,159305
Test de Levene: 1,06612 P-valor = 0,39912

Tabla ANOVA para NBVT según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>30,3896</td>
<td>4</td>
<td>7,5974</td>
<td>1,73</td>
<td>0,1824</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>87,712</td>
<td>20</td>
<td>4,3856</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>118,102</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DMA

Resumen Estadístico para DMA

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>0,278</td>
<td>0,29</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>0,494</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>0,278</td>
<td>0,23</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>0,238</td>
<td>0,23</td>
<td>0,23</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>0,164</td>
<td>0,35</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,04637</td>
<td>0,04637</td>
<td>0,21537</td>
<td>0,0963016</td>
</tr>
<tr>
<td>B</td>
<td>0,374659</td>
<td>0,18153</td>
<td>0,426063</td>
<td>0,190541</td>
</tr>
<tr>
<td>C</td>
<td>0,240736</td>
<td>0,02707</td>
<td>0,16453</td>
<td>0,0738799</td>
</tr>
<tr>
<td>D</td>
<td>0,198297</td>
<td>0,02047</td>
<td>0,143073</td>
<td>0,0639844</td>
</tr>
<tr>
<td>E</td>
<td>0,337299</td>
<td>0,01413</td>
<td>0,11887</td>
<td>0,0531601</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>0,58</td>
<td>0,58</td>
<td>0,17</td>
</tr>
<tr>
<td>B</td>
<td>0,17</td>
<td>1,18</td>
<td>1,01</td>
<td>0,23</td>
</tr>
<tr>
<td>C</td>
<td>0,1</td>
<td>0,54</td>
<td>0,44</td>
<td>0,21</td>
</tr>
<tr>
<td>D</td>
<td>0,06</td>
<td>0,46</td>
<td>0,4</td>
<td>0,21</td>
</tr>
<tr>
<td>E</td>
<td>0,21</td>
<td>0,5</td>
<td>0,29</td>
<td>0,27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,35</td>
<td>0,18</td>
<td>0,2159</td>
<td>0,197089</td>
</tr>
<tr>
<td>B</td>
<td>0,64</td>
<td>0,41</td>
<td>1,39531</td>
<td>1,27373</td>
</tr>
<tr>
<td>C</td>
<td>0,31</td>
<td>0,1</td>
<td>1,11821</td>
<td>1,02078</td>
</tr>
<tr>
<td>D</td>
<td>0,23</td>
<td>0,02</td>
<td>0,750944</td>
<td>0,685515</td>
</tr>
<tr>
<td>E</td>
<td>0,44</td>
<td>0,17</td>
<td>0,0420331</td>
<td>0,0383708</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,402756</td>
<td>0,183832</td>
<td>77,4593%</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1,15455</td>
<td>0,526979</td>
<td>86,2476%</td>
<td>2,47</td>
</tr>
<tr>
<td>C</td>
<td>1,79758</td>
<td>0,820478</td>
<td>59,1833%</td>
<td>1,39</td>
</tr>
<tr>
<td>D</td>
<td>2,24236</td>
<td>1,02349</td>
<td>60,1149%</td>
<td>1,19</td>
</tr>
<tr>
<td>E</td>
<td>-1,80912</td>
<td>-0,825746</td>
<td>33,579%</td>
<td>1,77</td>
</tr>
</tbody>
</table>

| Total | 5,92686 | 6,04907 | 72,6185% | 8,21 |
Contraste de Varianza

Contraste C de Cochran: 0,626895 P-valor = 0,0112945
Contraste de Bartlett: 1,58124 P-valor = 0,0801774
Contraste de Hartley: 12,8471
Test de Levene: 0,83747 P-valor = 0,517475

Contraste de Kruskal-Wallis para DMA según Individuo

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Tamaño muestral</th>
<th>Rango Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>12,2</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>15,4</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>11,7</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>10,0</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>15,7</td>
</tr>
</tbody>
</table>

Estadístico = 2,2644 P-valor = 0,687259

HCHO

Resumen Estadístico para HCHO

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>0,51</td>
<td>0,64</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>0,436</td>
<td>0,62</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>0,45</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>0,458</td>
<td>0,63</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>0,454</td>
<td>0,62</td>
<td></td>
</tr>
</tbody>
</table>

Total 25 0,4616 0,62 0,0

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0948</td>
<td>0,307896</td>
<td>0,137695</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0,10783</td>
<td>0,328375</td>
<td>0,146854</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0,1049</td>
<td>0,323883</td>
<td>0,144845</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0,08897</td>
<td>0,298278</td>
<td>0,133394</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0,08368</td>
<td>0,289275</td>
<td>0,129368</td>
<td></td>
</tr>
</tbody>
</table>

Total 0,0806973 0,284073 0,0568146

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>0,76</td>
<td>0,76</td>
<td>0,45</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>0,73</td>
<td>0,73</td>
<td>0,17</td>
</tr>
<tr>
<td>C</td>
<td>0,0</td>
<td>0,74</td>
<td>0,74</td>
<td>0,22</td>
</tr>
<tr>
<td>D</td>
<td>0,0</td>
<td>0,69</td>
<td>0,69</td>
<td>0,31</td>
</tr>
<tr>
<td>E</td>
<td>0,0</td>
<td>0,68</td>
<td>0,68</td>
<td>0,33</td>
</tr>
</tbody>
</table>

Total 0,0 0,76 0,76 0,22

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,7</td>
<td>0,25</td>
<td>-1,54436</td>
<td>-1,4098</td>
</tr>
<tr>
<td>B</td>
<td>0,66</td>
<td>0,49</td>
<td>-0,692178</td>
<td>-0,631869</td>
</tr>
<tr>
<td>C</td>
<td>0,69</td>
<td>0,47</td>
<td>-0,756726</td>
<td>-0,690793</td>
</tr>
<tr>
<td>D</td>
<td>0,66</td>
<td>0,35</td>
<td>-1,15395</td>
<td>-1,0534</td>
</tr>
<tr>
<td>E</td>
<td>0,64</td>
<td>0,31</td>
<td>-1,25536</td>
<td>-1,14598</td>
</tr>
</tbody>
</table>

Total 0,68 0,46 -0,748397 -1,52766

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,17577</td>
<td>0,993098 60,3718%</td>
<td>2,55</td>
</tr>
<tr>
<td>B</td>
<td>-2,37983</td>
<td>-1,08624 75,3153%</td>
<td>2,18</td>
</tr>
<tr>
<td>C</td>
<td>-1,78619</td>
<td>-0,81528 71,9739%</td>
<td>2,25</td>
</tr>
<tr>
<td>D</td>
<td>-0,11722</td>
<td>-0,0535039 65,1263%</td>
<td>2,29</td>
</tr>
<tr>
<td>E</td>
<td>0,440961</td>
<td>0,20127 63,717%</td>
<td>2,27</td>
</tr>
</tbody>
</table>

Total -1,1457 -1,16932 61,5409% 11,54
Contraste de Varianza

Contraste C de Cochran: 0,224562 P-valor = 1,0
Contraste de Bartlett: 1,00461 P-valor = 0,999151
Contraste de Hartley: 1,2886
Test de Levene: 0,0366954 P-valor = 0,997205

Tabla ANOVA para HCHO según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,016016</td>
<td>4</td>
<td>0,004004</td>
<td>0,04</td>
<td>0,9964</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>1,92072</td>
<td>20</td>
<td>0,096036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>1,93674</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pH

Resumen Estadístico para pH

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,238</td>
<td>6,17</td>
<td>6,17</td>
</tr>
<tr>
<td>B</td>
<td>6,244</td>
<td>6,23</td>
<td>6,29</td>
</tr>
<tr>
<td>C</td>
<td>6,264</td>
<td>6,29</td>
<td>6,29</td>
</tr>
<tr>
<td>D</td>
<td>6,268</td>
<td>6,26</td>
<td>6,26</td>
</tr>
<tr>
<td>E</td>
<td>6,228</td>
<td>6,23</td>
<td>6,35</td>
</tr>
</tbody>
</table>

| Individuo | Media geométrica | Varianza | Desviación típica | Error estándar |
|-----------|-----------------|----------|-------------------|----------------|-----------|
| A | 6,23644 | 0,02432 | 0,15594 | 0,0697424 |
| B | 6,24373 | 0,00428 | 0,0654217 | 0,0292575 |
| C | 6,26345 | 0,00858 | 0,0926283 | 0,0414246 |
| D | 6,26664 | 0,02137 | 0,0926283 | 0,0414246 |
| E | 6,22701 | 0,01532 | 0,123774 | 0,0553334 |
| Total | 6,24744 | 0,012557 | 0,112052 | 0,0224104 |

| Individuo | Mínimo | Máximo | Rango | Primer cuartil |
|-----------|--------|--------|-------|----------------|---------|
| A | 6,05 | 6,41 | 0,36 | 6,17 |
| B | 6,17 | 6,33 | 0,16 | 6,2 |
| C | 6,11 | 6,36 | 0,25 | 6,27 |
| D | 6,09 | 6,47 | 0,38 | 6,18 |
| E | 6,08 | 6,35 | 0,27 | 6,13 |
| Total | 6,05 | 6,47 | 0,42 | 6,17 |

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,39</td>
<td>0,22</td>
<td>0,145755</td>
<td>0,133055</td>
</tr>
<tr>
<td>B</td>
<td>6,29</td>
<td>0,09</td>
<td>0,357494</td>
<td>0,326346</td>
</tr>
<tr>
<td>C</td>
<td>6,29</td>
<td>0,02</td>
<td>-1,4324</td>
<td>-1,3076</td>
</tr>
<tr>
<td>D</td>
<td>6,34</td>
<td>0,16</td>
<td>0,305957</td>
<td>0,279299</td>
</tr>
<tr>
<td>E</td>
<td>6,35</td>
<td>0,22</td>
<td>-0,121136</td>
<td>-0,110581</td>
</tr>
<tr>
<td>Total</td>
<td>6,34</td>
<td>0,17</td>
<td>0,00664803</td>
<td>0,0135702</td>
</tr>
</tbody>
</table>

Individuo | Curtosis | Curtosis tipificada | Coef. de variación | Suma |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2,29176</td>
<td>-1,04604</td>
<td>2,49998%</td>
<td>31,19</td>
</tr>
<tr>
<td>B</td>
<td>-1,65724</td>
<td>-0,756423</td>
<td>1,04775%</td>
<td>31,22</td>
</tr>
<tr>
<td>C</td>
<td>3,00805</td>
<td>1,37298</td>
<td>1,47874%</td>
<td>31,32</td>
</tr>
<tr>
<td>D</td>
<td>-0,457223</td>
<td>-0,208693</td>
<td>2,33224%</td>
<td>31,34</td>
</tr>
<tr>
<td>E</td>
<td>-2,59374</td>
<td>-1,18388</td>
<td>1,98738%</td>
<td>31,14</td>
</tr>
<tr>
<td>Total</td>
<td>-0,809112</td>
<td>-0,825796</td>
<td>1,79329%</td>
<td>156,21</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,329227 P-valor = 0,744625
Contraste de Bartlett: 1,19208 P-valor = 0,525806
Contraste de Hartley: 5,68224
Test de Levene: 0,784013 P-valor = 0,548893

Tabla ANOVA para pH según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,005856</td>
<td>4</td>
<td>0,001464</td>
<td>0,10</td>
<td>0,9815</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>0,29548</td>
<td>20</td>
<td>0,014774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>0,301336</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ÁCIDO GRASO C16:0

Resumen Estadístico para C16:0

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>15,9</td>
<td>15,96</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>16,454</td>
<td>17,31</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>16,086</td>
<td>15,32</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>16,33</td>
<td>17,35</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>16,218</td>
<td>17,28</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>16,1976</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15,6598</td>
<td>9,35705</td>
<td>3,05893</td>
<td>1,36799</td>
</tr>
<tr>
<td>B</td>
<td>16,2583</td>
<td>7,62413</td>
<td>2,76718</td>
<td>1,23484</td>
</tr>
<tr>
<td>C</td>
<td>15,9539</td>
<td>5,60023</td>
<td>2,37912</td>
<td>1,06398</td>
</tr>
<tr>
<td>D</td>
<td>16,1751</td>
<td>6,11325</td>
<td>2,47125</td>
<td>1,10574</td>
</tr>
<tr>
<td>E</td>
<td>16,0827</td>
<td>5,37132</td>
<td>2,31761</td>
<td>1,03647</td>
</tr>
<tr>
<td>Total</td>
<td>16,0246</td>
<td>5,72614</td>
<td>2,39294</td>
<td>1,478587</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12,3</td>
<td>19,12</td>
<td>6,82</td>
<td>13,41</td>
</tr>
<tr>
<td>B</td>
<td>12,86</td>
<td>18,77</td>
<td>5,91</td>
<td>14,12</td>
</tr>
<tr>
<td>C</td>
<td>13,83</td>
<td>19,91</td>
<td>6,08</td>
<td>14,68</td>
</tr>
<tr>
<td>D</td>
<td>13,54</td>
<td>18,67</td>
<td>5,13</td>
<td>13,81</td>
</tr>
<tr>
<td>E</td>
<td>13,56</td>
<td>18,91</td>
<td>5,35</td>
<td>14,02</td>
</tr>
<tr>
<td>Total</td>
<td>12,3</td>
<td>19,91</td>
<td>7,61</td>
<td>13,83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuau.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>18,71</td>
<td>5,3</td>
<td>-0,0949098</td>
<td>-0,0886404</td>
</tr>
<tr>
<td>B</td>
<td>18,81</td>
<td>4,49</td>
<td>-0,665162</td>
<td>-0,607207</td>
</tr>
<tr>
<td>C</td>
<td>16,69</td>
<td>2,01</td>
<td>1,281813</td>
<td>1,17014</td>
</tr>
<tr>
<td>D</td>
<td>18,28</td>
<td>4,47</td>
<td>-0,452962</td>
<td>-0,413496</td>
</tr>
<tr>
<td>E</td>
<td>17,32</td>
<td>3,3</td>
<td>-0,246113</td>
<td>-0,22467</td>
</tr>
<tr>
<td>Total</td>
<td>18,61</td>
<td>4,78</td>
<td>-0,0959741</td>
<td>-0,195906</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2,62827</td>
<td>-1,19963</td>
<td>19,2386%</td>
<td>79,5</td>
</tr>
<tr>
<td>B</td>
<td>-2,59393</td>
<td>-1,18396</td>
<td>16,7812%</td>
<td>82,27</td>
</tr>
<tr>
<td>C</td>
<td>1,52457</td>
<td>0,695867</td>
<td>14,79%</td>
<td>80,43</td>
</tr>
<tr>
<td>D</td>
<td>-3,10181</td>
<td>-1,41578</td>
<td>15,1408%</td>
<td>81,65</td>
</tr>
<tr>
<td>E</td>
<td>-2,43183</td>
<td>-1,10997</td>
<td>14,2904%</td>
<td>81,09</td>
</tr>
<tr>
<td>Total</td>
<td>-1,57281</td>
<td>-1,60524</td>
<td>14,7734%</td>
<td>404,94</td>
</tr>
</tbody>
</table>

124
Contraste de Varianza

Contraste C de Cochran: 0,274191 P-valor = 1,0
Contraste de Bartlett: 1,02238 P-valor = 0,98228
Contraste de Hartley: 1,74204
Test de Levene: 0,158125 P-valor = 0,956994

Tabla ANOVA para C16:0 según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,923536</td>
<td>4</td>
<td>0,230884</td>
<td>0,03</td>
<td>0,9976</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>136,504</td>
<td>20</td>
<td>6,8252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>137,427</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPA

Resumen Estadístico para EPA

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>5,498</td>
<td>5,81</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>5,422</td>
<td>5,51</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>5,646</td>
<td>4,96</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>5,504</td>
<td>5,31</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>5,482</td>
<td>5,94</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>5,5104</td>
<td>5,51</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5,36909</td>
<td>1,80077</td>
<td>1,34193</td>
<td>0,600128</td>
</tr>
<tr>
<td>B</td>
<td>5,30277</td>
<td>1,63497</td>
<td>1,27866</td>
<td>0,571834</td>
</tr>
<tr>
<td>C</td>
<td>5,49962</td>
<td>2,30393</td>
<td>1,51787</td>
<td>0,678812</td>
</tr>
<tr>
<td>D</td>
<td>5,4288</td>
<td>1,11698</td>
<td>1,05687</td>
<td>0,472648</td>
</tr>
<tr>
<td>E</td>
<td>5,39161</td>
<td>1,17257</td>
<td>1,08285</td>
<td>0,484266</td>
</tr>
<tr>
<td>Total</td>
<td>5,39798</td>
<td>1,34387</td>
<td>1,15925</td>
<td>0,231851</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4,15</td>
<td>7,4</td>
<td>3,25</td>
<td>4,26</td>
</tr>
<tr>
<td>B</td>
<td>3,95</td>
<td>7,24</td>
<td>3,29</td>
<td>4,51</td>
</tr>
<tr>
<td>C</td>
<td>4,47</td>
<td>8,07</td>
<td>3,6</td>
<td>4,55</td>
</tr>
<tr>
<td>D</td>
<td>4,57</td>
<td>7,2</td>
<td>2,63</td>
<td>4,71</td>
</tr>
<tr>
<td>E</td>
<td>4,07</td>
<td>6,64</td>
<td>2,57</td>
<td>4,63</td>
</tr>
<tr>
<td>Total</td>
<td>3,95</td>
<td>8,07</td>
<td>4,12</td>
<td>4,55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5,87</td>
<td>1,61</td>
<td>0,451007</td>
<td>0,411711</td>
</tr>
<tr>
<td>B</td>
<td>5,9</td>
<td>1,39</td>
<td>0,432608</td>
<td>0,394916</td>
</tr>
<tr>
<td>C</td>
<td>6,18</td>
<td>1,63</td>
<td>1,32604</td>
<td>1,2105</td>
</tr>
<tr>
<td>D</td>
<td>5,73</td>
<td>1,02</td>
<td>1,2591</td>
<td>1,14939</td>
</tr>
<tr>
<td>E</td>
<td>6,13</td>
<td>1,5</td>
<td>0,496379</td>
<td>-0,453313</td>
</tr>
<tr>
<td>Total</td>
<td>6,13</td>
<td>1,58</td>
<td>0,559344</td>
<td>1,14176</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0,766009</td>
<td>-0,349634</td>
<td>24,4076%</td>
<td>27,49</td>
</tr>
<tr>
<td>B</td>
<td>-0,348446</td>
<td>-0,159043</td>
<td>23,5828%</td>
<td>27,11</td>
</tr>
<tr>
<td>C</td>
<td>0,991708</td>
<td>0,452651</td>
<td>26,8864%</td>
<td>28,23</td>
</tr>
<tr>
<td>D</td>
<td>1,45407</td>
<td>0,663687</td>
<td>19,2019%</td>
<td>27,52</td>
</tr>
<tr>
<td>E</td>
<td>-2,07197</td>
<td>-0,94572</td>
<td>19,7529%</td>
<td>27,41</td>
</tr>
<tr>
<td>Total</td>
<td>-0,574451</td>
<td>-0,586296</td>
<td>21,0376%</td>
<td>137,76</td>
</tr>
</tbody>
</table>
Contraste de Varianza
Contraste C de Cochran: 0,286943 P-valor = 1,0
Contraste de Bartlett: 1,03748 P-valor = 0,9551
Contraste de Hartley: 2,06264
Test de Levene: 0,102187 P-valor = 0,980436

Tabla ANOVA para EPA según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,136016</td>
<td>4</td>
<td>0,034004</td>
<td>0,02</td>
<td>0,9990</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>32,1169</td>
<td>20</td>
<td>1,60584</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>32,2529</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DHA

Resumen Estadístico para DHA

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>20,456</td>
<td>21,05</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>22,64</td>
<td>23,52</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>21,86</td>
<td>21,6</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>22,97</td>
<td>19,04</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>21,296</td>
<td>23,41</td>
<td></td>
</tr>
</tbody>
</table>

Individuo | Media geométrica | Varianza | Desviación típica | Error estándar |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20,0273</td>
<td>22,1344</td>
<td>4,70472</td>
<td>2,10401</td>
</tr>
<tr>
<td>B</td>
<td>21,4886</td>
<td>67,1893</td>
<td>8,1969</td>
<td>3,66577</td>
</tr>
<tr>
<td>C</td>
<td>21,5336</td>
<td>18,1113</td>
<td>4,25573</td>
<td>1,90322</td>
</tr>
<tr>
<td>D</td>
<td>22,2578</td>
<td>46,3639</td>
<td>6,80911</td>
<td>3,04513</td>
</tr>
<tr>
<td>E</td>
<td>20,7378</td>
<td>27,3286</td>
<td>5,22767</td>
<td>2,33789</td>
</tr>
</tbody>
</table>

Total | 21,1952 | 31,048 | 5,57207 | 1,11441 |

Individuo | Mínimo | Máximo | Rango | Primer cuartil |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15,39</td>
<td>26,99</td>
<td>11,6</td>
<td>16,05</td>
</tr>
<tr>
<td>B</td>
<td>13,75</td>
<td>34,88</td>
<td>21,13</td>
<td>16,64</td>
</tr>
<tr>
<td>C</td>
<td>17,09</td>
<td>28,66</td>
<td>11,57</td>
<td>20,02</td>
</tr>
<tr>
<td>D</td>
<td>18,19</td>
<td>33,91</td>
<td>15,72</td>
<td>18,32</td>
</tr>
<tr>
<td>E</td>
<td>14,04</td>
<td>27,29</td>
<td>13,25</td>
<td>18,05</td>
</tr>
</tbody>
</table>

Total | 13,75 | 34,88 | 21,13 | 18,05 |

Individuo | Segundo cuartil | Rango intercuart. | Asimetría | Asimetría tipi. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>22,4</td>
<td>5,95</td>
<td>0,368945</td>
<td>0,3368</td>
</tr>
<tr>
<td>B</td>
<td>24,41</td>
<td>7,77</td>
<td>0,697087</td>
<td>0,63635</td>
</tr>
<tr>
<td>C</td>
<td>21,86</td>
<td>1,84</td>
<td>1,09575</td>
<td>1,00028</td>
</tr>
<tr>
<td>D</td>
<td>25,39</td>
<td>7,07</td>
<td>1,38985</td>
<td>1,26875</td>
</tr>
<tr>
<td>E</td>
<td>23,69</td>
<td>5,64</td>
<td>-0,518281</td>
<td>-0,473123</td>
</tr>
</tbody>
</table>

Total | 24,41 | 6,36 | 0,736359 | 1,50309 |

Individuo | Curtosis | Curtosis tipificada | Coef. de variación | Suma |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0,975256</td>
<td>-0,445142</td>
<td>22,9992%</td>
<td>102,28</td>
</tr>
<tr>
<td>B</td>
<td>0,306151</td>
<td>0,139738</td>
<td>36,2054%</td>
<td>113,2</td>
</tr>
<tr>
<td>C</td>
<td>2,20737</td>
<td>1,00752</td>
<td>19,4806%</td>
<td>108,23</td>
</tr>
<tr>
<td>D</td>
<td>1,06359</td>
<td>0,48546</td>
<td>29,6435%</td>
<td>114,85</td>
</tr>
<tr>
<td>E</td>
<td>-0,92591</td>
<td>-0,422618</td>
<td>24,5477%</td>
<td>106,48</td>
</tr>
</tbody>
</table>

Total | 0,277794 | 0,283522 | 25,5113% | 546,04 |

126
Contraste de Varianza

Contraste C de Cochran: 0,37095 P-valor = 0,48638
Contraste de Bartlett: 1,12621 P-valor = 0,700242
Contraste de Hartley: 3,7098 P-valor = 0,83982

Tabla ANOVA para DHA según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>20,6416</td>
<td>4</td>
<td>5,16039</td>
<td>0,14</td>
<td>0,9643</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>724,51</td>
<td>20</td>
<td>36,2255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>745,151</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ÍNDICE POLIENOS

Resumen Estadístico para Índice Polienos

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>1,64</td>
<td>1,54</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>1,676</td>
<td>1,63</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>1,7</td>
<td>1,67</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>1,734</td>
<td>1,67</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>1,638</td>
<td>1,62</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,6218</td>
<td>0,08455</td>
<td>0,290775</td>
<td>0,13038</td>
</tr>
<tr>
<td>B</td>
<td>1,64718</td>
<td>0,12653</td>
<td>0,355711</td>
<td>0,159079</td>
</tr>
<tr>
<td>C</td>
<td>1,69612</td>
<td>0,0166</td>
<td>0,128841</td>
<td>0,0576194</td>
</tr>
<tr>
<td>D</td>
<td>1,71319</td>
<td>0,09733</td>
<td>0,311978</td>
<td>0,139521</td>
</tr>
<tr>
<td>E</td>
<td>1,62535</td>
<td>0,05182</td>
<td>0,22764</td>
<td>0,101804</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,44</td>
<td>2,15</td>
<td>0,71</td>
<td>1,44</td>
</tr>
<tr>
<td>B</td>
<td>1,25</td>
<td>2,24</td>
<td>0,99</td>
<td>1,62</td>
</tr>
<tr>
<td>C</td>
<td>1,57</td>
<td>1,84</td>
<td>0,27</td>
<td>1,69</td>
</tr>
<tr>
<td>D</td>
<td>1,4</td>
<td>2,25</td>
<td>0,85</td>
<td>1,66</td>
</tr>
<tr>
<td>E</td>
<td>1,34</td>
<td>1,96</td>
<td>0,62</td>
<td>1,55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Segundo cuartil</th>
<th>Rango intercua.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,59</td>
<td>0,11</td>
<td>2,0241</td>
<td>1,84774</td>
</tr>
<tr>
<td>B</td>
<td>1,64</td>
<td>0,02</td>
<td>0,942218</td>
<td>0,860123</td>
</tr>
<tr>
<td>C</td>
<td>1,63</td>
<td>0,24</td>
<td>0,270016</td>
<td>0,24649</td>
</tr>
<tr>
<td>D</td>
<td>1,69</td>
<td>0,03</td>
<td>1,36364</td>
<td>1,24483</td>
</tr>
<tr>
<td>E</td>
<td>1,72</td>
<td>0,17</td>
<td>0,239719</td>
<td>0,218833</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individuo</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4,24236</td>
<td>1,93637</td>
<td>17,7302%</td>
<td>8,2</td>
</tr>
<tr>
<td>B</td>
<td>2,47282</td>
<td>1,12868</td>
<td>21,2238%</td>
<td>8,38</td>
</tr>
<tr>
<td>C</td>
<td>-2,99837</td>
<td>-1,36856</td>
<td>7,57888%</td>
<td>8,5</td>
</tr>
<tr>
<td>D</td>
<td>3,00316</td>
<td>1,37075</td>
<td>17,9988%</td>
<td>8,67</td>
</tr>
<tr>
<td>E</td>
<td>0,724222</td>
<td>0,39561</td>
<td>13,8974%</td>
<td>8,49</td>
</tr>
</tbody>
</table>

Total | 0,777265 | 0,793293 | 15,1028% | 41,94 |
Contraste de Varianza
Contraste C de Cochran: 0,335775 P-valor = 0,698348
Contraste de Bartlett: 1,22108 P-valor = 0,458162
Contraste de Hartley: 7,62229
Test de Levene: 0,146146 P-valor = 0,962589

Tabla ANOVA para Índice Polienos según Individuo

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,033336</td>
<td>4</td>
<td>0,008334</td>
<td>0,11</td>
<td>0,9774</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>1,50732</td>
<td>20</td>
<td>0,075366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>1,54066</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANÁLISIS DE VARIANCIA UNIFACTORIAL Y PRUEBAS NO PARAMÉTRICAS SEGÚN RÉPLICAS PARA ANÁLISIS PROXIMAL CENIZAS

Resumen Estadístico para Cenizas

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1,30667</td>
<td>1,32</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1,29667</td>
<td>1,305</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>1,30167</td>
<td>1,315</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,30639</td>
<td>0,000866667</td>
<td>0,0294392</td>
<td>0,0120185</td>
</tr>
<tr>
<td>2</td>
<td>1,29636</td>
<td>0,000946667</td>
<td>0,0307679</td>
<td>0,012561</td>
</tr>
<tr>
<td>Total</td>
<td>1,30136</td>
<td>0,000851515</td>
<td>0,0291807</td>
<td>0,00842375</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,26</td>
<td>1,33</td>
<td>0,07</td>
<td>1,28</td>
</tr>
<tr>
<td>2</td>
<td>1,25</td>
<td>1,33</td>
<td>0,08</td>
<td>1,27</td>
</tr>
<tr>
<td>Total</td>
<td>1,25</td>
<td>1,33</td>
<td>0,08</td>
<td>1,275</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,33</td>
<td>0,05</td>
<td>-1,06347</td>
<td>-1,06347</td>
</tr>
<tr>
<td>2</td>
<td>1,32</td>
<td>0,05</td>
<td>-0,704959</td>
<td>-0,704959</td>
</tr>
<tr>
<td>Total</td>
<td>1,325</td>
<td>0,05</td>
<td>-0,723921</td>
<td>-1,02378</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0,747337</td>
<td>-0,373669</td>
<td>2,253%</td>
<td>7,84</td>
</tr>
<tr>
<td>2</td>
<td>-0,929875</td>
<td>-0,464938</td>
<td>2,37285%</td>
<td>7,78</td>
</tr>
<tr>
<td>Total</td>
<td>-1,06839</td>
<td>-0,755466</td>
<td>2,2418%</td>
<td>15,62</td>
</tr>
</tbody>
</table>

Contraste de Varianza
Contraste C de Cochran: 0,522059 P-valor = 0,925198
Contraste de Bartlett: 1,00097 P-valor = 0,925026
Contraste de Hartley: 1,09231
Test de Levene: 0,0682594 P-valor = 0,79919
Tabla ANOVA para Cenizas según Duplicado

Análisis de la Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,0003</td>
<td>1</td>
<td>0,0003</td>
<td>0,33</td>
<td>0,5779</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>0,00906667</td>
<td>10</td>
<td>0,000906667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>0,00936667</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENN

Resumen Estadístico para ENN

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1,06833</td>
<td>1,37</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1,275</td>
<td>1,355</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>1,17167</td>
<td>1,37</td>
<td>1,65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,767544</td>
<td>0,401777</td>
<td>0,633859</td>
<td>0,258772</td>
</tr>
<tr>
<td>2</td>
<td>1,04366</td>
<td>0,48915</td>
<td>0,699393</td>
<td>0,285526</td>
</tr>
<tr>
<td>Total</td>
<td>0,895015</td>
<td>0,416615</td>
<td>0,645457</td>
<td>0,186327</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1</td>
<td>1,65</td>
<td>1,55</td>
<td>0,45</td>
</tr>
<tr>
<td>2</td>
<td>0,24</td>
<td>2,22</td>
<td>1,98</td>
<td>0,83</td>
</tr>
<tr>
<td>Total</td>
<td>0,1</td>
<td>2,22</td>
<td>2,12</td>
<td>0,64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercuartil</th>
<th>Asimetría</th>
<th>Asimetría típica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,47</td>
<td>1,02</td>
<td>-0,967565</td>
<td>-0,967565</td>
</tr>
<tr>
<td>2</td>
<td>1,65</td>
<td>0,82</td>
<td>-0,234979</td>
<td>-0,234979</td>
</tr>
<tr>
<td>Total</td>
<td>1,63</td>
<td>0,99</td>
<td>-0,386979</td>
<td>-0,54727</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Curtosis</th>
<th>Curtosis típificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1,10519</td>
<td>-0,552596</td>
<td>59,3315%</td>
<td>6,41</td>
</tr>
<tr>
<td>2</td>
<td>-0,347504</td>
<td>-0,173752</td>
<td>54,8543%</td>
<td>7,65</td>
</tr>
<tr>
<td>Total</td>
<td>-0,656576</td>
<td>-0,464269</td>
<td>55,0888%</td>
<td>14,06</td>
</tr>
</tbody>
</table>

Contraste de Varianza

Contraste C de Cochran: 0,549035 P-valor = 0,83433
Contraste de Bartlett: 1,00484 P-valor = 0,833986
Contraste de Hartley: 1,21747
Test de Levene: 0,159607 P-valor = 0,697918
Tabla ANOVA para ENN según Duplicado

Análisis de la Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,128133</td>
<td>1</td>
<td>0,128133</td>
<td>0,29</td>
<td>0,6035</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>4,45463</td>
<td>10</td>
<td>0,445463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>4,58277</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HUMEDAD

Resumen Estadístico para Humedad

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>62,775</td>
<td>61,89</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>62,6533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>62,7142</td>
<td>61,95</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62,5839</td>
<td>28,9267</td>
<td>5,37835</td>
<td>2,1957</td>
</tr>
<tr>
<td>2</td>
<td>62,4573</td>
<td>29,6125</td>
<td>5,44173</td>
<td>2,22158</td>
</tr>
<tr>
<td>Total</td>
<td>62,5206</td>
<td>26,6127</td>
<td>5,15875</td>
<td>1,4892</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primero cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57,62</td>
<td>69,23</td>
<td>11,61</td>
<td>58,1</td>
</tr>
<tr>
<td>2</td>
<td>56,92</td>
<td>69,64</td>
<td>12,72</td>
<td>58,2</td>
</tr>
<tr>
<td>Total</td>
<td>56,92</td>
<td>69,64</td>
<td>12,72</td>
<td>58,15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercuartil.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67,92</td>
<td>9,82</td>
<td>0,181738</td>
<td>0,181738</td>
</tr>
<tr>
<td>2</td>
<td>66,71</td>
<td>8,51</td>
<td>0,172528</td>
<td>0,172528</td>
</tr>
<tr>
<td>Total</td>
<td>67,315</td>
<td>9,165</td>
<td>0,148032</td>
<td>0,209348</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2,82211</td>
<td>-1,41106</td>
<td>8,56767%</td>
<td>376,65</td>
</tr>
<tr>
<td>2</td>
<td>-2,57646</td>
<td>-1,28823</td>
<td>8,68547%</td>
<td>375,92</td>
</tr>
<tr>
<td>Total</td>
<td>-2,09626</td>
<td>-1,48228</td>
<td>8,22582%</td>
<td>752,57</td>
</tr>
</tbody>
</table>

Contraste de Varianza

- Contraste C de Cochran: 0,505858 P-valor = 0,980136
- Contraste de Bartlett: 1,00007 P-valor = 0,980073
- Contraste de Hartley: 1,02371
- Test de Levene: 0,00204741 P-valor = 0,9648
Tabla ANOVA para Humedad según Duplicado

Análisis de la Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,0444083</td>
<td>1</td>
<td>0,0444083</td>
<td>0,00</td>
<td>0,9697</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>292,696</td>
<td>10</td>
<td>29,2696</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>292,74</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROTEÍNAS

Resumen Estadístico para Proteínas

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>21,42</td>
<td>20,92</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>21,3433</td>
<td>20,645</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>21,3817</td>
<td>20,84</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21,2871</td>
<td>6,88592</td>
<td>2,6241</td>
<td>1,07129</td>
</tr>
<tr>
<td>2</td>
<td>21,1878</td>
<td>8,08087</td>
<td>2,84269</td>
<td>1,16052</td>
</tr>
<tr>
<td>Total</td>
<td>21,2374</td>
<td>6,80469</td>
<td>2,60858</td>
<td>0,753032</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18,69</td>
<td>24,56</td>
<td>5,87</td>
<td>19,29</td>
</tr>
<tr>
<td>2</td>
<td>18,73</td>
<td>24,95</td>
<td>6,22</td>
<td>18,89</td>
</tr>
<tr>
<td>Total</td>
<td>18,69</td>
<td>24,95</td>
<td>6,26</td>
<td>18,945</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercuartil</th>
<th>Asimetría</th>
<th>Asimetría tip.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24,14</td>
<td>4,85</td>
<td>0,229118</td>
<td>0,229118</td>
</tr>
<tr>
<td>2</td>
<td>24,2</td>
<td>5,31</td>
<td>0,334254</td>
<td>0,334254</td>
</tr>
<tr>
<td>Total</td>
<td>24,17</td>
<td>5,25</td>
<td>0,237886</td>
<td>0,336421</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2,61558</td>
<td>-1,30779</td>
<td>12,2507%</td>
<td>128,52</td>
</tr>
<tr>
<td>2</td>
<td>-2,50209</td>
<td>-1,25104</td>
<td>13,3188%</td>
<td>128,06</td>
</tr>
<tr>
<td>Total</td>
<td>-2,00964</td>
<td>-1,42103</td>
<td>12,2001%</td>
<td>256,58</td>
</tr>
</tbody>
</table>

Contraste de Varianza

Contraste C de Cochran: 0,53992 P-valor = 0,864912
Contraste de Bartlett: 1,0032 P-valor = 0,864624
Contraste de Hartley: 1,17353 Test de Levene: 0,0818911 P-valor = 0,780591
Tabla ANOVA para Proteínas según Duplicado

Análisis de la Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,0176333</td>
<td>1</td>
<td>0,0176333</td>
<td>0,00</td>
<td>0,9622</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>74,8339</td>
<td>10</td>
<td>7,48339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>74,8516</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACEITE

Resumen Estadístico para Aceite

<table>
<thead>
<tr>
<th>Quintuplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>10,0</td>
<td>10,43</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>11,37</td>
<td>12,35</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>12,433</td>
<td>12,28</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>9,91</td>
<td>9,43</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>11,2167</td>
<td>11,71</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>10,996</td>
<td>11,44</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quintuplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9,85211</td>
<td>4,1989</td>
<td>2,04912</td>
<td>1,18306</td>
</tr>
<tr>
<td>B</td>
<td>11,1477</td>
<td>6,9204</td>
<td>2,63067</td>
<td>1,51882</td>
</tr>
<tr>
<td>C</td>
<td>12,448</td>
<td>1,34203</td>
<td>1,15846</td>
<td>0,668838</td>
</tr>
<tr>
<td>D</td>
<td>9,863</td>
<td>1,4497</td>
<td>1,20403</td>
<td>0,69515</td>
</tr>
<tr>
<td>E</td>
<td>11,1561</td>
<td>1,95143</td>
<td>1,39694</td>
<td>0,805522</td>
</tr>
<tr>
<td>Total</td>
<td>10,8509</td>
<td>3,24581</td>
<td>1,80161</td>
<td>0,465175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quintuplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7,77</td>
<td>11,8</td>
<td>4,03</td>
<td>7,77</td>
</tr>
<tr>
<td>B</td>
<td>8,39</td>
<td>13,37</td>
<td>4,98</td>
<td>8,39</td>
</tr>
<tr>
<td>C</td>
<td>11,44</td>
<td>13,73</td>
<td>2,29</td>
<td>11,44</td>
</tr>
<tr>
<td>D</td>
<td>9,62</td>
<td>11,28</td>
<td>2,66</td>
<td>9,62</td>
</tr>
<tr>
<td>E</td>
<td>9,64</td>
<td>12,3</td>
<td>2,66</td>
<td>9,64</td>
</tr>
<tr>
<td>Total</td>
<td>7,77</td>
<td>13,73</td>
<td>5,96</td>
<td>9,43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quintuplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11,8</td>
<td>4,03</td>
<td>-0,902724</td>
<td>-0,638322</td>
</tr>
<tr>
<td>B</td>
<td>13,37</td>
<td>4,98</td>
<td>-1,44374</td>
<td>-1,02088</td>
</tr>
<tr>
<td>C</td>
<td>13,73</td>
<td>2,29</td>
<td>0,765508</td>
<td>0,541296</td>
</tr>
<tr>
<td>D</td>
<td>11,28</td>
<td>2,26</td>
<td>1,50885</td>
<td>1,06692</td>
</tr>
<tr>
<td>E</td>
<td>12,3</td>
<td>2,66</td>
<td>-1,39099</td>
<td>-0,983579</td>
</tr>
<tr>
<td>Total</td>
<td>12,3</td>
<td>2,87</td>
<td>-0,336501</td>
<td>-0,532055</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quintuplicado</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20,4912%</td>
<td>30,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>23,1369%</td>
<td>34,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>9,28007%</td>
<td>37,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>12,1497%</td>
<td>29,73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>12,4541%</td>
<td>33,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-0,88515</td>
<td>-0,699772</td>
<td>16,3843%</td>
<td>164,94</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,436275 P-valor = 0,504939
Contraste de Bartlett: 1,23842 P-valor = 0,775778
Contraste de Hartley: 5,15665
Test de Levene: 0,2832 P-valor = 0,882267

Tabla ANOVA para Aceite según Quintuplicado

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>13,7164</td>
<td>4</td>
<td>3,42911</td>
<td>1,08</td>
<td>0,4162</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>31,7249</td>
<td>10</td>
<td>3,17249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>45,4414</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANÁLISIS DE VARIANCIA DE DOS VÍAS PARA VALORES PROMEDIO CON RESPECTO A DIETA SUMINISTRADA Y TIEMPO DE ALMACENAMIENTO

ACEITE

Análisis de la Varianza para Aceite - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>19,6145</td>
<td>2</td>
<td>9,80726</td>
<td>8,68</td>
<td>0,0099</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>54,0218</td>
<td>4</td>
<td>13,5054</td>
<td>11,96</td>
<td>0,0019</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>9,03655</td>
<td>8</td>
<td>1,12957</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>82,6728</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para Aceite según Dieta

<table>
<thead>
<tr>
<th>Método: 95,0 porcentaje HSD de Tukey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieta</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
</tbody>
</table>

Contraste Diferencias +/- Límites

I - II *-2,306 1,91742
I - III *-2,53 1,91742
II - III -0,224 1,91742

* indica una diferencia significativa.
Medias y 95,0 Porcentajes Intervalos HSD de Tukey

Contraste Múltiple de Rangos para Aceite según Tiempo

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>10,73</td>
<td>0,613615</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>10,9867</td>
<td>0,613615</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>11,2533</td>
<td>0,613615</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>12,0033</td>
<td>0,613615</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>15,8667</td>
<td>0,613615</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>-0,266667</td>
<td>2,99263</td>
</tr>
<tr>
<td>0 - 6</td>
<td>0,256667</td>
<td>2,99263</td>
</tr>
<tr>
<td>0 - 9</td>
<td>-1,01667</td>
<td>2,99263</td>
</tr>
<tr>
<td>0 - 12</td>
<td>*-4,88</td>
<td>2,99263</td>
</tr>
<tr>
<td>3 - 6</td>
<td>-0,75</td>
<td>2,99263</td>
</tr>
<tr>
<td>3 - 9</td>
<td>*-4,61333</td>
<td>2,99263</td>
</tr>
<tr>
<td>3 - 12</td>
<td>*-4,61333</td>
<td>2,99263</td>
</tr>
<tr>
<td>6 - 9</td>
<td>*-5,13667</td>
<td>2,99263</td>
</tr>
<tr>
<td>6 - 12</td>
<td>*-5,13667</td>
<td>2,99263</td>
</tr>
<tr>
<td>9 - 12</td>
<td>*-3,86333</td>
<td>2,99263</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
ALFA TOCOFEROL

Análisis de la Varianza para Alpha Toc - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>2330,54</td>
<td>2</td>
<td>1165,27</td>
<td>0,51</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>42833,5</td>
<td>4</td>
<td>10708,4</td>
<td>4,69</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>18251,0</td>
<td>8</td>
<td>2281,37</td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>63415,0</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para Alpha Toc según Tiempo

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>3</td>
<td>139,713</td>
<td>27,5764</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>153,627</td>
<td>27,5764</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>199,71</td>
<td>27,5764</td>
<td>XX</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>222,927</td>
<td>27,5764</td>
<td>XX</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>289,29</td>
<td>27,5764</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>-66,3633</td>
</tr>
<tr>
<td>0 - 6</td>
<td>23,2167</td>
</tr>
<tr>
<td>0 - 9</td>
<td>69,3</td>
</tr>
<tr>
<td>0 - 12</td>
<td>83,2133</td>
</tr>
<tr>
<td>3 - 6</td>
<td>89,58</td>
</tr>
<tr>
<td>3 - 9</td>
<td>135,663</td>
</tr>
<tr>
<td>3 - 12</td>
<td>149,577</td>
</tr>
<tr>
<td>6 - 9</td>
<td>46,0833</td>
</tr>
<tr>
<td>6 - 12</td>
<td>59,9967</td>
</tr>
<tr>
<td>9 - 12</td>
<td>13,9133</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
Medias y 95,0 Porcentajes Intervalos HSD de Tukey

![Graph](image)

BETA TOCOFEROL

Análisis de la Varianza para Beta Toc - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>1,20016</td>
<td>2</td>
<td>0,60008</td>
<td>1,07</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>4,19477</td>
<td>4</td>
<td>1,04869</td>
<td>1,86</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>4,49851</td>
<td>8</td>
<td>0,562313</td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>9,89344</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

GAMMA TOCOFEROL

Análisis de la Varianza para Gamma Toc - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>466,738</td>
<td>2</td>
<td>233,369</td>
<td>17,72</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>135,698</td>
<td>4</td>
<td>33,92145</td>
<td>2,58</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>105,337</td>
<td>8</td>
<td>13,1671</td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>707,773</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.
Contraste Múltiple de Rangos para Gamma Toc según Dieta

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5</td>
<td>9,882</td>
<td>1,62278</td>
<td>X</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td>17,478</td>
<td>1,62278</td>
<td>X</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>23,516</td>
<td>1,62278</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste Diferencias +/- Límites

I - II	*-13,634	6,54647
I - III	*-7,596	6,54647
II - III	6,038	6,54647

* indica una diferencia significativa.

DELTA TOCOFEROL

Análisis de la Varianza para Delta Toc - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado Medio Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>36,4194</td>
<td>2</td>
<td>18,2097</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>22,9403</td>
<td>4</td>
<td>5,73508</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>67,2941</td>
<td>8</td>
<td>8,41176</td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>126,654</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.
ÍNDICE PERÓXIDOS

Análisis de la Varianza para Índice Peróxidos - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:Dieta</td>
<td>9,29625</td>
<td>2</td>
<td>4,64813</td>
<td>3,37</td>
<td>0,0869</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>196,384</td>
<td>4</td>
<td>49,0959</td>
<td>35,58</td>
<td>0,0000</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>11,0399</td>
<td>8</td>
<td>1,37998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>216,728</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para Índice Peróxidos según Tiempo

Método: 95,0 porcentaje HSD de Tukey

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>3,10667</td>
<td>0,678229</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3,22333</td>
<td>0,678229</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>8,95667</td>
<td>0,678229</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>10,9367</td>
<td>0,678229</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>11,2333</td>
<td>0,678229</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>-0,116667</td>
</tr>
<tr>
<td>0 - 6</td>
<td>-7,83</td>
</tr>
<tr>
<td>0 - 12</td>
<td>-5,85</td>
</tr>
<tr>
<td>3 - 6</td>
<td>-7,71333</td>
</tr>
<tr>
<td>3 - 9</td>
<td>-8,01</td>
</tr>
<tr>
<td>3 - 12</td>
<td>-5,73333</td>
</tr>
<tr>
<td>6 - 9</td>
<td>-0,296667</td>
</tr>
<tr>
<td>6 - 12</td>
<td>1,98</td>
</tr>
<tr>
<td>9 - 12</td>
<td>2,27667</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.

Medias y 95,0 Porcentajes Intervalos HSD de Tukey
<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A: Dieta</td>
<td>5,06721</td>
<td>2</td>
<td>2,53361</td>
<td>0,0873</td>
</tr>
<tr>
<td>B: Tiempo</td>
<td>70,6696</td>
<td>4</td>
<td>17,6674</td>
<td>0,0002</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>6,03572</td>
<td>8</td>
<td>0,754465</td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>81,7725</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para p Anisidina según Tiempo

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>2,65</td>
<td>0,501486</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>2,65333</td>
<td>0,501486</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4,01</td>
<td>0,501486</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>6,64333</td>
<td>0,501486</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>8,01</td>
<td>0,501486</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>0,00333333</td>
<td>2,44577</td>
</tr>
<tr>
<td>0 - 9</td>
<td>*-3,99</td>
<td>2,44577</td>
</tr>
<tr>
<td>0 - 12</td>
<td>*-5,35667</td>
<td>2,44577</td>
</tr>
<tr>
<td>3 - 6</td>
<td>-1,36</td>
<td>2,44577</td>
</tr>
<tr>
<td>3 - 9</td>
<td>*-3,99333</td>
<td>2,44577</td>
</tr>
<tr>
<td>3 - 12</td>
<td>*-5,36</td>
<td>2,44577</td>
</tr>
<tr>
<td>6 - 9</td>
<td>*-2,63333</td>
<td>2,44577</td>
</tr>
<tr>
<td>6 - 12</td>
<td>*-4,0</td>
<td>2,44577</td>
</tr>
<tr>
<td>9 - 12</td>
<td>-1,36667</td>
<td>2,44577</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
Análisis de la Varianza para NBVT - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>6,916</td>
<td>2</td>
<td>3,458</td>
<td>5,73</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>22,836</td>
<td>4</td>
<td>5,709</td>
<td>9,47</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>4,824</td>
<td>8</td>
<td>0,603</td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>34,576</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para NBVT según Dieta

Método: 95,0 porcentaje HSD de Tukey

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>5</td>
<td>6,96</td>
<td>0,347275</td>
<td>X</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>8,02</td>
<td>0,347275</td>
<td>XX</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>8,6</td>
<td>0,347275</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste Diferencias +/- Límites

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias</th>
<th>+/- Limites</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - II</td>
<td>0,58</td>
<td>1,40094</td>
</tr>
<tr>
<td>I - III</td>
<td>*1,64</td>
<td>1,40094</td>
</tr>
<tr>
<td>II - III</td>
<td>1,06</td>
<td>1,40094</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
Contraste Múltiple de Rangos para NBVT según Tiempo

Método: 95,0 porcentaje HSD de Tukey

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>6,23333</td>
<td>0,44833</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>7,0</td>
<td>0,44833</td>
<td>XX</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>7,5</td>
<td>0,44833</td>
<td>XXX</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>9,13333</td>
<td>0,44833</td>
<td>XX</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>9,43333</td>
<td>0,44833</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>-0,766667</td>
<td>2,18653</td>
</tr>
<tr>
<td>0 - 6</td>
<td>-1,26667</td>
<td>2,18653</td>
</tr>
<tr>
<td>0 - 9</td>
<td>*-3,2</td>
<td>2,18653</td>
</tr>
<tr>
<td>0 - 12</td>
<td>*-2,9</td>
<td>2,18653</td>
</tr>
<tr>
<td>3 - 6</td>
<td>-0,5</td>
<td>2,18653</td>
</tr>
<tr>
<td>3 - 9</td>
<td>*-2,43333</td>
<td>2,18653</td>
</tr>
<tr>
<td>3 - 12</td>
<td>-2,13333</td>
<td>2,18653</td>
</tr>
<tr>
<td>6 - 9</td>
<td>-1,93333</td>
<td>2,18653</td>
</tr>
<tr>
<td>6 - 12</td>
<td>-1,63333</td>
<td>2,18653</td>
</tr>
<tr>
<td>9 - 12</td>
<td>0,3</td>
<td>2,18653</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
Medias y 95,0 Porcentajes Intervalos HSD de Tukey

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0,156667</td>
<td>0,0551362</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0,223333</td>
<td>0,0551362</td>
<td>XX</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>0,366667</td>
<td>0,0551362</td>
<td>XX</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>0,383333</td>
<td>0,0551362</td>
<td>XX</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0,416667</td>
<td>0,0551362</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste Múltiple de Rangos para DMA según Tiempo

<table>
<thead>
<tr>
<th>Diferencias</th>
<th>0 - 3</th>
<th>0 - 6</th>
<th>0 - 9</th>
<th>0 - 12</th>
<th>3 - 6</th>
<th>3 - 9</th>
<th>3 - 12</th>
<th>6 - 9</th>
<th>6 - 12</th>
<th>9 - 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0,066667</td>
<td>-0,26</td>
<td>-0,226667</td>
<td>-0,21</td>
<td>-0,193333</td>
<td>-0,16</td>
<td>-0,143333</td>
<td>0,033333</td>
<td>0,05</td>
<td>0,0166667</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
Análisis de la Varianza para HCHO - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A: Dieta</td>
<td>0,0000133333</td>
<td>2</td>
<td>0,0000066667</td>
<td>0,01</td>
</tr>
<tr>
<td>B: Tiempo</td>
<td>1,16737</td>
<td>4</td>
<td>0,291843</td>
<td>316,08</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>0,00738667</td>
<td>8</td>
<td>0,00092333</td>
<td>0,0000</td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>1,17477</td>
<td>14</td>
<td>0,00092333</td>
<td>0,0000</td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para HCHO según Tiempo

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0,0</td>
<td>0,0175436</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0,28</td>
<td>0,0175436</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0,636667</td>
<td>0,0175436</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>0,653333</td>
<td>0,0175436</td>
<td>XX</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>0,736667</td>
<td>0,0175436</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste Diferencias +/- Límites

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias</th>
<th>+/-</th>
<th>Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>-0,28</td>
<td></td>
<td>0,0855611</td>
</tr>
<tr>
<td>0 - 6</td>
<td>-0,636667</td>
<td></td>
<td>0,0855611</td>
</tr>
<tr>
<td>0 - 9</td>
<td>-0,653333</td>
<td></td>
<td>0,0855611</td>
</tr>
<tr>
<td>0 - 12</td>
<td>-0,736667</td>
<td></td>
<td>0,0855611</td>
</tr>
<tr>
<td>3 - 6</td>
<td>-0,356667</td>
<td></td>
<td>0,0855611</td>
</tr>
<tr>
<td>3 - 9</td>
<td>-0,373333</td>
<td></td>
<td>0,0855611</td>
</tr>
<tr>
<td>3 - 12</td>
<td>-0,456667</td>
<td></td>
<td>0,0855611</td>
</tr>
<tr>
<td>6 - 9</td>
<td>-0,016667</td>
<td></td>
<td>0,0855611</td>
</tr>
<tr>
<td>6 - 12</td>
<td>-0,1</td>
<td></td>
<td>0,0855611</td>
</tr>
<tr>
<td>9 - 12</td>
<td>-0,083333</td>
<td></td>
<td>0,0855611</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
Medias y 95,0 Porcentajes Intervalos HSD de Tukey

Tiempo

pH

Análisis de la Varianza para pH - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado</th>
<th>Medio Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>0,00177333</td>
<td>2</td>
<td>0,000886667</td>
<td>0,39</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>0,0438933</td>
<td>4</td>
<td>0,0109733</td>
<td>4,87</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>0,0180267</td>
<td>8</td>
<td>0,00225333</td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>0,0636933</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para pH según Tiempo

<table>
<thead>
<tr>
<th>Método: 95,0 porcentaje HSD de Tukey</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo Recuento Media LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 3 6,14 0,0274064 X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 3 6,20667 0,0274064 XX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3 6,25333 0,0274064 XX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 3 6,27333 0,0274064 XX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 3 6,29 0,0274064 X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contraste Diferencias +/- Límites

| 0 - 3 0,0366667 0,133662 |
| 0 - 6 0,0833333 0,133662 |
| 0 - 9 *0,15 0,133662 |
| 0 - 12 0,0166667 0,133662 |
| 3 - 6 0,0466667 0,133662 |
| 3 - 9 0,113333 0,133662 |
| 3 - 12 -0,02 0,133662 |
| 6 - 9 0,0666667 0,133662 |
| 6 - 12 -0,0666667 0,133662 |
| 9 - 12 -0,133333 0,133662 |

* indica una diferencia significativa.
HUMEDAD

Análisis de la Varianza para Humedad - Sumas de Cuadrados de Tipo III
--
<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>3,70228</td>
<td>2</td>
<td>1,85114</td>
<td>0,84</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>249,645</td>
<td>4</td>
<td>62,4112</td>
<td>28,31</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>17,6389</td>
<td>8</td>
<td>2,20486</td>
<td></td>
</tr>
</tbody>
</table>
--
TOTAL (CORREGIDO) | 270,986 | 14 | | |
--
Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para Humedad según Tiempo
--
<table>
<thead>
<tr>
<th>Método: 95,0 porcentaje HSD de Tukey</th>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo</td>
<td>Recuento</td>
<td>Media LS</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>57,91</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>67,1833</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>67,52</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>67,7033</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>69,3433</td>
</tr>
</tbody>
</table>
--
Contraste
--
<table>
<thead>
<tr>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>0,336667</td>
</tr>
<tr>
<td>0 - 6</td>
<td>-0,183333</td>
</tr>
<tr>
<td>0 - 9</td>
<td>-1,823333</td>
</tr>
<tr>
<td>0 - 12</td>
<td>*9,61</td>
</tr>
<tr>
<td>3 - 6</td>
<td>-0,52</td>
</tr>
<tr>
<td>3 - 9</td>
<td>-2,16</td>
</tr>
<tr>
<td>3 - 12</td>
<td>*9,273333</td>
</tr>
<tr>
<td>6 - 9</td>
<td>-1,64</td>
</tr>
<tr>
<td>6 - 12</td>
<td>*9,793333</td>
</tr>
<tr>
<td>9 - 12</td>
<td>*11,4333</td>
</tr>
</tbody>
</table>
--
* indica una diferencia significativa.
ÁCIDO GRASO 16:0

Análisis de la Varianza para C16:0 - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado</th>
<th>Medio Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>55,5773</td>
<td>2</td>
<td>27,7886</td>
<td>32,95</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>29,8972</td>
<td>4</td>
<td>7,47429</td>
<td>8,86</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>6,74671</td>
<td>8</td>
<td>0,843338</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL (CORREGIDO) 92,2212 14

Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para C16:0 según Dieta

<table>
<thead>
<tr>
<th>Método: 95,0 porcentaje HSD de Tukey</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieta</td>
<td>Recuento</td>
<td>Media LS</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td>16,198</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>17,494</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>20,772</td>
</tr>
</tbody>
</table>

Contraste Diferencias +/- Límites

I - II	*3,278	1,65677
I - III	*4,574	1,65677
II - III	1,296	1,65677

* indica una diferencia significativa.
Medias y 95,0 Porcentajes Intervalos HSD de Tukey

![Graph showing medians and 95% Tukey HSD intervals for C16:0 according to time.](image)

Contraste Múltiple de Rangos para C16:0 según Tiempo

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>16,3167</td>
<td>0,530201</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>16,5533</td>
<td>0,530201</td>
<td>XX</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>19,07</td>
<td>0,530201</td>
<td>XX</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>19,41</td>
<td>0,530201</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>19,4233</td>
<td>0,530201</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>0,353333</td>
<td>2,58582</td>
</tr>
<tr>
<td>0 - 6</td>
<td>*3,10667</td>
<td>2,58582</td>
</tr>
<tr>
<td>0 - 9</td>
<td>*2,87</td>
<td>2,58582</td>
</tr>
<tr>
<td>0 - 12</td>
<td>0,0133333</td>
<td>2,58582</td>
</tr>
<tr>
<td>3 - 6</td>
<td>*2,75333</td>
<td>2,58582</td>
</tr>
<tr>
<td>3 - 9</td>
<td>2,51667</td>
<td>2,58582</td>
</tr>
<tr>
<td>3 - 12</td>
<td>-0,34</td>
<td>2,58582</td>
</tr>
<tr>
<td>6 - 9</td>
<td>-0,236667</td>
<td>2,58582</td>
</tr>
<tr>
<td>6 - 12</td>
<td>*3,09333</td>
<td>2,58582</td>
</tr>
<tr>
<td>9 - 12</td>
<td>-2,85667</td>
<td>2,58582</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
Medias y 95,0 Porcentajes Intervalos HSD de Tukey

EPA

Análisis de la Varianza para EPA - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado</th>
<th>Medio Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>50,5358</td>
<td>2</td>
<td>25,2679</td>
<td>82,30</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>14,2973</td>
<td>4</td>
<td>3,57433</td>
<td>11,64</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>2,45609</td>
<td>8</td>
<td>0,307012</td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>67,2892</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para EPA según Dieta

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>5</td>
<td>5,51</td>
<td>0,247795</td>
<td>X</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>5,858</td>
<td>0,247795</td>
<td>X</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>9,566</td>
<td>0,247795</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Comparación</th>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - II</td>
<td>3,708</td>
<td>0,99963</td>
</tr>
<tr>
<td>I - III</td>
<td>4,056</td>
<td>0,99963</td>
</tr>
<tr>
<td>II - III</td>
<td>0,348</td>
<td>0,99963</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
Medias y 95,0 Porcentajes Intervalos HSD de Tukey

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>5,83667</td>
<td>0,319902</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>6,0</td>
<td>0,319902</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6,96</td>
<td>0,319902</td>
<td>XX</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>7,71333</td>
<td>0,319902</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>8,38</td>
<td>0,319902</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste Múltiple de Rangos para EPA según Tiempo

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>0,753333</td>
<td>1,56018</td>
</tr>
<tr>
<td>0 - 6</td>
<td>*1,87667</td>
<td>1,56018</td>
</tr>
<tr>
<td>0 - 9</td>
<td>*1,71333</td>
<td>1,56018</td>
</tr>
<tr>
<td>0 - 12</td>
<td>-0,666667</td>
<td>1,56018</td>
</tr>
<tr>
<td>3 - 6</td>
<td>1,12333</td>
<td>1,56018</td>
</tr>
<tr>
<td>3 - 9</td>
<td>0,96</td>
<td>1,56018</td>
</tr>
<tr>
<td>3 - 12</td>
<td>-1,42</td>
<td>1,56018</td>
</tr>
<tr>
<td>6 - 9</td>
<td>-0,16333</td>
<td>1,56018</td>
</tr>
<tr>
<td>6 - 12</td>
<td>*-2,54333</td>
<td>1,56018</td>
</tr>
<tr>
<td>9 - 12</td>
<td>*-2,38</td>
<td>1,56018</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
Medias y 95,0 Porcentajes Intervalos HSD de Tukey

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>16,66</td>
<td>0,791151</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>17,3</td>
<td>0,791151</td>
<td>XX</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>20,75</td>
<td>0,791151</td>
<td>XX</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>23,1133</td>
<td>0,791151</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>29,5933</td>
<td>0,791151</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste Múltiple de Rangos para DHA según Tiempo

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias +/- Limite</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>2,36333 3,85849</td>
</tr>
<tr>
<td>0 - 6</td>
<td>*6,45333 3,85849</td>
</tr>
<tr>
<td>0 - 9</td>
<td>*5,81333 3,85849</td>
</tr>
<tr>
<td>0 - 12</td>
<td>*6,48 3,85849</td>
</tr>
<tr>
<td>3 - 6</td>
<td>*4,09 3,85849</td>
</tr>
<tr>
<td>3 - 9</td>
<td>3,45 3,85849</td>
</tr>
<tr>
<td>3 - 12</td>
<td>*8,84333 3,85849</td>
</tr>
<tr>
<td>6 - 9</td>
<td>-0,64 3,85849</td>
</tr>
<tr>
<td>6 - 12</td>
<td>*12,9333 3,85849</td>
</tr>
<tr>
<td>9 - 12</td>
<td>*12,2933 3,85849</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.

Análisis de la Varianza para DHA - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de Cuadrados</th>
<th>GL</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>1,01665</td>
<td>2</td>
<td>0,508327</td>
<td>0,27</td>
<td>0,7696</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>329,195</td>
<td>4</td>
<td>82,2987</td>
<td>43,83</td>
<td>0,0000</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>15,0221</td>
<td>8</td>
<td>1,87776</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL (CORREGIDO) 345,234 14

Los cocientes F están basados en el error cuadrático medio residual.

DHA

Análisis de la Varianza para DHA - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de Cuadrados</th>
<th>GL</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>1,01665</td>
<td>2</td>
<td>0,508327</td>
<td>0,27</td>
<td>0,7696</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>329,195</td>
<td>4</td>
<td>82,2987</td>
<td>43,83</td>
<td>0,0000</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>15,0221</td>
<td>8</td>
<td>1,87776</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL (CORREGIDO) 345,234 14

Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para DHA según Tiempo

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias +/- Limite</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>2,36333 3,85849</td>
</tr>
<tr>
<td>0 - 6</td>
<td>*6,45333 3,85849</td>
</tr>
<tr>
<td>0 - 9</td>
<td>*5,81333 3,85849</td>
</tr>
<tr>
<td>0 - 12</td>
<td>*6,48 3,85849</td>
</tr>
<tr>
<td>3 - 6</td>
<td>*4,09 3,85849</td>
</tr>
<tr>
<td>3 - 9</td>
<td>3,45 3,85849</td>
</tr>
<tr>
<td>3 - 12</td>
<td>*8,84333 3,85849</td>
</tr>
<tr>
<td>6 - 9</td>
<td>-0,64 3,85849</td>
</tr>
<tr>
<td>6 - 12</td>
<td>*12,9333 3,85849</td>
</tr>
<tr>
<td>9 - 12</td>
<td>*12,2933 3,85849</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
ÍNDICE POLIENOS

Análisis de la Varianza para Índice Poliencos - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>0,10372</td>
<td>2</td>
<td>0,05186</td>
<td>7,51</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>0,657427</td>
<td>4</td>
<td>0,164357</td>
<td>23,81</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>0,0552133</td>
<td>8</td>
<td>0,00690167</td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>0,81636</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para Índice Poliencos según Dieta

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5</td>
<td>1,482</td>
<td>0,0371528</td>
<td>X</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>1,532</td>
<td>0,0371528</td>
<td>XX</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td>1,678</td>
<td>0,0371528</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - II</td>
<td>-0,05</td>
<td>0,149878</td>
</tr>
<tr>
<td>I - III</td>
<td>*-0,196</td>
<td>0,149878</td>
</tr>
<tr>
<td>II - III</td>
<td>-0,146</td>
<td>0,149878</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
Medias y 95,0 Porcentajes Intervalos HSD de Tukey

![Graph](image)

Contraste Múltiple de Rangos para Índice Polienos según Tiempo

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>1.4</td>
<td>0.0479641</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1.41667</td>
<td>0.0479641</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1.46</td>
<td>0.0479641</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1.58</td>
<td>0.0479641</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>1.96333</td>
<td>0.0479641</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 3</td>
<td>0.12</td>
<td>0.233923</td>
</tr>
<tr>
<td>0 - 6</td>
<td>0.18</td>
<td>0.233923</td>
</tr>
<tr>
<td>0 - 9</td>
<td>0.163333</td>
<td>0.233923</td>
</tr>
<tr>
<td>0 - 12</td>
<td>-0.383333</td>
<td>0.233923</td>
</tr>
<tr>
<td>3 - 6</td>
<td>0.06</td>
<td>0.233923</td>
</tr>
<tr>
<td>3 - 9</td>
<td>0.043333</td>
<td>0.233923</td>
</tr>
<tr>
<td>3 - 12</td>
<td>-0.503333</td>
<td>0.233923</td>
</tr>
<tr>
<td>6 - 9</td>
<td>-0.546667</td>
<td>0.233923</td>
</tr>
<tr>
<td>6 - 12</td>
<td>-0.546667</td>
<td>0.233923</td>
</tr>
<tr>
<td>9 - 12</td>
<td>-0.546667</td>
<td>0.233923</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.

ANÁLISIS DE VARIANCIA DE DOS VÍAS PARA VALORES PROMEDIO CON RESPECTO A DIETA SUMINISTRADA Y TIEMPO DE ALMACENAMIENTO PARA ANÁLISIS PROXIMAL (TIEMPO 0 Y 12 MESES)

PROTEÍNAS

Análisis de la Varianza para Proteínas - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado</th>
<th>Medio Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>1,86253</td>
<td>2</td>
<td>0,931267</td>
<td>1,45</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>34,1294</td>
<td>1</td>
<td>34,1294</td>
<td>53,21</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>1,2828</td>
<td>2</td>
<td>0,6414</td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>37,2747</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para Proteínas según Tiempo

<table>
<thead>
<tr>
<th>Método: 95,0 porcentaje HSD de Tukey</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIEMPO</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

Contraste | Diferencias | +/- Limites |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 12</td>
<td>*-4,77</td>
<td>2,81355</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
Medias y 95,0 Porcentajes Intervalos HSD de Tukey

![Diagrama de medias y porcentajes](image)

CENIZAS

Análisis de la Varianza para Cenizas - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>0,00203333</td>
<td>2</td>
<td>0,00101667</td>
<td>3,21</td>
<td>0,2375</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>0,000416667</td>
<td>1</td>
<td>0,000416667</td>
<td>1,32</td>
<td>0,3701</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>0,000633333</td>
<td>2</td>
<td>0,000316667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>0,00308333</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

ENN

Análisis de la Varianza para ENN - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>0,5929</td>
<td>2</td>
<td>0,29645</td>
<td>0,60</td>
<td>0,6245</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>0,00481667</td>
<td>1</td>
<td>0,00481667</td>
<td>0,01</td>
<td>0,9303</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>0,986233</td>
<td>2</td>
<td>0,493117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>1,58395</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

HUMEDAD

Análisis de la Varianza para Humedad - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>4,7197</td>
<td>2</td>
<td>2,35985</td>
<td>2,15</td>
<td>0,3178</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>138,528</td>
<td>1</td>
<td>138,528</td>
<td>125,99</td>
<td>0,0078</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>2,1991</td>
<td>2</td>
<td>1,09955</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>145,447</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.
Contraste Múltiple de Rangos para Humedad_ según Tiempo

Método: 95,0 porcentaje HSD de Tukey

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>3</td>
<td>57,91</td>
<td>0,605406</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>67,52</td>
<td>0,605406</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 12</td>
<td>-9,61</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.

LÍPIDOS

Análisis de la Varianza para Lípidos - Sumas de Cuadrados de Tipo III

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Suma de cuadrados</th>
<th>GL Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS PRINCIPALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:Dieta</td>
<td>4,02173</td>
<td>2</td>
<td>2,01087</td>
<td>0,3189</td>
</tr>
<tr>
<td>B:Tiempo</td>
<td>35,7216</td>
<td>1</td>
<td>35,7216</td>
<td>0,0254</td>
</tr>
<tr>
<td>RESIDUOS</td>
<td>1,8828</td>
<td>2</td>
<td>0,9414</td>
<td></td>
</tr>
<tr>
<td>TOTAL (CORREGIDO)</td>
<td>41,6261</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los cocientes F están basados en el error cuadrático medio residual.

Contraste Múltiple de Rangos para Lípidos según Tiempo

Método: 95,0 porcentaje HSD de Tukey

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Recuento</th>
<th>Media LS</th>
<th>Sigma LS</th>
<th>Grupos Homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>10,9867</td>
<td>0,560179</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>15,8667</td>
<td>0,560179</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 12</td>
<td>-4,88</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
ANÁLISIS DE VARIANCIA DE UNA VÍA Y PRUEBAS NO PARAMÉTRICAS PARA PARÁMETROS DE COMPOSICIÓN DETERMINADOS EN LAS DIETAS DE ENGORDA SUMINISTRADAS A LOS SALMONES

ACEITE

Resumen Estadístico para Aceite

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>29,8933</td>
<td>30,49</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>29,93</td>
<td>30,43</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>29,9117</td>
<td>30,46</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>29,8779</td>
<td>1,35903</td>
<td>1,16578</td>
<td>0,673061</td>
</tr>
<tr>
<td>B</td>
<td>29,9159</td>
<td>1,2484</td>
<td>1,11732</td>
<td>0,645084</td>
</tr>
<tr>
<td>Total</td>
<td>29,8969</td>
<td>1,04338</td>
<td>1,02146</td>
<td>0,417009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28,55</td>
<td>30,64</td>
<td>2,09</td>
<td>28,55</td>
</tr>
<tr>
<td>B</td>
<td>28,65</td>
<td>30,71</td>
<td>2,06</td>
<td>28,65</td>
</tr>
<tr>
<td>Total</td>
<td>28,55</td>
<td>30,71</td>
<td>2,16</td>
<td>28,65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercuart.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30,64</td>
<td>2,09</td>
<td>-1,69985</td>
<td>-1,20197</td>
</tr>
<tr>
<td>B</td>
<td>30,71</td>
<td>2,06</td>
<td>-1,61048</td>
<td>-1,13878</td>
</tr>
<tr>
<td>Total</td>
<td>30,64</td>
<td>1,99</td>
<td>-0,930368</td>
<td>-0,930368</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,89978%</td>
<td>89,68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3,73314%</td>
<td>89,79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-1,84971</td>
<td>-0,924853</td>
<td>3,41492%</td>
<td>179,47</td>
</tr>
</tbody>
</table>
Contraste de Varianza
Contraste C de Cochran: 0,521215 P-valor = 0,95757
Contraste de Bartlett: 1,0009 P-valor = 0,957179
Contraste de Hartley: 1,08862
Test de Levene: 0,00014415 P-valor = 0,990996

Tabla ANOVA para Aceite según Duplicado

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,00201667</td>
<td>1</td>
<td>0,00201667</td>
<td>0,00</td>
<td>0,9705</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>5,21487</td>
<td>4</td>
<td>1,30372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>5,21688</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resumen Estadístico para Aceite

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>28,6</td>
<td>28,6</td>
<td>28,55</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>30,675</td>
<td>30,675</td>
<td>30,64</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>30,46</td>
<td>30,46</td>
<td>30,43</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>29,9117</td>
<td>30,46</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>28,6</td>
<td>0,005</td>
<td>0,0707107</td>
<td>0,05</td>
</tr>
<tr>
<td>II</td>
<td>30,675</td>
<td>0,00245</td>
<td>0,0494975</td>
<td>0,03</td>
</tr>
<tr>
<td>III</td>
<td>30,46</td>
<td>0,0018</td>
<td>0,0424264</td>
<td>0,03</td>
</tr>
<tr>
<td>Total</td>
<td>29,8969</td>
<td>1,04338</td>
<td>1,02146</td>
<td>0,017009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>28,55</td>
<td>28,65</td>
<td>0,1</td>
<td>28,55</td>
</tr>
<tr>
<td>II</td>
<td>30,43</td>
<td>30,71</td>
<td>0,28</td>
<td>30,43</td>
</tr>
<tr>
<td>III</td>
<td>30,43</td>
<td>30,49</td>
<td>0,06</td>
<td>30,43</td>
</tr>
<tr>
<td>Total</td>
<td>28,55</td>
<td>30,71</td>
<td>2,16</td>
<td>28,65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>28,65</td>
<td>0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>30,71</td>
<td>0,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>30,49</td>
<td>0,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30,64</td>
<td>1,99</td>
<td>-0,930368</td>
<td>-0,930368</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0,24724%</td>
<td>57,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>0,161361%</td>
<td>61,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0,139286%</td>
<td>60,92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-1,84971</td>
<td>-6,924853</td>
<td>3,41492%</td>
<td>178,67</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,540541 P-valor = 0,794356
Contraste de Bartlett: 1,09956 P-valor = 0,906144
Contraste de Hartley: 2,77778
Test de Levene: 5,14983E25 P-valor = 0,0

Tabla ANOVA para Aceite según Dieta

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>5,20763</td>
<td>2</td>
<td>2,60382</td>
<td>844,48</td>
<td>0,0001</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>0,00925</td>
<td>3</td>
<td>0,00308333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>5,21688</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contraste Múltiple de Rango para Aceite según Dieta

Método: 95,0 porcentaje HSD de Tukey

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frec.</th>
<th>Media</th>
<th>Grupos homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>28,6</td>
<td>X</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>30,46</td>
<td>X</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>30,675</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - II</td>
<td>*-2,075</td>
<td>0,231853</td>
</tr>
<tr>
<td>I - III</td>
<td>*-1,86</td>
<td>0,231853</td>
</tr>
<tr>
<td>II - III</td>
<td>0,215</td>
<td>0,231853</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.

Medias y 95,0 Porcentajes Intervalos HSD de Tukey
CENIZAS
Resumen Estadístico para Cenizas

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>6,25</td>
<td>6,35</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>6,1333</td>
<td>6,42</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>6,2817</td>
<td>6,365</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,24785</td>
<td>0,0399</td>
<td>0,19975</td>
<td>0,115326</td>
</tr>
<tr>
<td>B</td>
<td>6,31029</td>
<td>0,0569333</td>
<td>0,238607</td>
<td>0,13776</td>
</tr>
<tr>
<td>Total</td>
<td>6,27899</td>
<td>0,0399367</td>
<td>0,199842</td>
<td>0,081585</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,02</td>
<td>6,38</td>
<td>0,36</td>
<td>6,02</td>
</tr>
<tr>
<td>B</td>
<td>6,04</td>
<td>6,48</td>
<td>0,44</td>
<td>6,04</td>
</tr>
<tr>
<td>Total</td>
<td>6,02</td>
<td>6,48</td>
<td>0,46</td>
<td>6,04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercu.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,38</td>
<td>0,36</td>
<td>-1,6882</td>
<td>-1,19374</td>
</tr>
<tr>
<td>B</td>
<td>6,48</td>
<td>0,44</td>
<td>-1,60965</td>
<td>-1,1382</td>
</tr>
<tr>
<td>Total</td>
<td>6,42</td>
<td>0,38</td>
<td>-0,763492</td>
<td>-0,763492</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,196%</td>
<td></td>
<td></td>
<td>18,75</td>
</tr>
<tr>
<td>B</td>
<td>3,77942%</td>
<td></td>
<td></td>
<td>18,94</td>
</tr>
<tr>
<td>Total</td>
<td>-1,80504</td>
<td>-0,902518</td>
<td>3,18135%</td>
<td>37,69</td>
</tr>
</tbody>
</table>

Contraste de Varianza
Contraste C de Cochran: 0,587952 P-valor = 0,824096
Contraste de Bartlett: 1,01584 P-valor = 0,82256
Contraste de Hartley: 1,4269 Test de Levene: 0,0284318 P-valor = 0,874281

Tabla ANOVA para Cenizas según Duplicado

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,00601667</td>
<td>1</td>
<td>0,00601667</td>
<td>0,12</td>
<td>0,7422</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>0,193667</td>
<td>4</td>
<td>0,0484167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>0,199683</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Resumen Estadístico para Cenizas

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>6,03</td>
<td>6,03</td>
<td>6,02</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>6,43</td>
<td>6,43</td>
<td>6,38</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>6,385</td>
<td>6,385</td>
<td>6,35</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>6,28167</td>
<td>6,365</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6,02999</td>
<td>0,0002</td>
<td>0,0141421</td>
<td>0,01</td>
</tr>
<tr>
<td>II</td>
<td>6,42981</td>
<td>0,005</td>
<td>0,0707107</td>
<td>0,05</td>
</tr>
<tr>
<td>III</td>
<td>6,3849</td>
<td>0,00245</td>
<td>0,0494975</td>
<td>0,035</td>
</tr>
<tr>
<td>Total</td>
<td>6,27899</td>
<td>0,0399367</td>
<td>0,199842</td>
<td>0,081585</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6,02</td>
<td>6,04</td>
<td>0,02</td>
<td>6,02</td>
</tr>
<tr>
<td>II</td>
<td>6,38</td>
<td>6,48</td>
<td>0,1</td>
<td>6,38</td>
</tr>
<tr>
<td>III</td>
<td>6,35</td>
<td>6,42</td>
<td>0,07</td>
<td>6,35</td>
</tr>
<tr>
<td>Total</td>
<td>6,02</td>
<td>6,48</td>
<td>0,46</td>
<td>6,04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Segundo cuartil</th>
<th>Rango intercuartil</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6,04</td>
<td>0,02</td>
<td>-0,763492</td>
<td>-0,763492</td>
</tr>
<tr>
<td>II</td>
<td>6,48</td>
<td>0,1</td>
<td>-0,763492</td>
<td>-0,763492</td>
</tr>
<tr>
<td>III</td>
<td>6,42</td>
<td>0,07</td>
<td>-0,763492</td>
<td>-0,763492</td>
</tr>
<tr>
<td>Total</td>
<td>6,42</td>
<td>0,38</td>
<td>-0,763492</td>
<td>-0,763492</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0,23453%</td>
<td>12,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>1,0997%</td>
<td>12,86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0,775215%</td>
<td>12,77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-1,80504</td>
<td>-0,902518</td>
<td>3,18135%</td>
<td>37,69</td>
</tr>
</tbody>
</table>

Contraste de Varianza

Contraste C de Cochran: 0,653595 P-valor = 0,574644
Contraste de Bartlett: 1,89155 P-valor = 0,515864
Contraste de Hartley: 25,0
Test de Levene: 3,10574E27 P-valor = 0,0

Tabla ANOVA para Cenizas según Dieta

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,192033</td>
<td>2</td>
<td>0,0960167</td>
<td>37,65</td>
<td>0,0075</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>0,00765</td>
<td>3</td>
<td>0,00255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>0,199683</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contraste Múltiple de Rango para Cenizas según Dieta

Método: 95,0 porcentaje HSD de Tukey

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frec.</th>
<th>Media</th>
<th>Grupos homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>6,03</td>
<td>X</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>6,385</td>
<td>X</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>6,43</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Diferencias</th>
<th>+/-</th>
<th>Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - II</td>
<td>*-0,4</td>
<td>0,21085</td>
</tr>
<tr>
<td>I - III</td>
<td>*-0,355</td>
<td>0,21085</td>
</tr>
<tr>
<td>II - III</td>
<td>0,045</td>
<td>0,21085</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.

ENN

Resumen Estadístico para ENN

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>13,5</td>
<td>12,86</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>13,39</td>
<td>11,98</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>13,445</td>
<td>12,42</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13,3598</td>
<td>5,8768</td>
<td>2,42421</td>
<td>1,39962</td>
</tr>
<tr>
<td>B</td>
<td>13,1754</td>
<td>9,2473</td>
<td>3,04094</td>
<td>1,75569</td>
</tr>
<tr>
<td>Total</td>
<td>13,2673</td>
<td>6,05327</td>
<td>2,46037</td>
<td>1,00443</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11,46</td>
<td>16,18</td>
<td>4,72</td>
<td>11,46</td>
</tr>
<tr>
<td>B</td>
<td>11,31</td>
<td>16,88</td>
<td>5,57</td>
<td>11,31</td>
</tr>
<tr>
<td>Total</td>
<td>11,31</td>
<td>16,88</td>
<td>5,57</td>
<td>11,46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>16,18</td>
<td>4,72</td>
<td>1,10521</td>
<td>0,781504</td>
</tr>
<tr>
<td>B</td>
<td>16,88</td>
<td>5,57</td>
<td>1,63794</td>
<td>1,1582</td>
</tr>
<tr>
<td>Total</td>
<td>16,18</td>
<td>4,72</td>
<td>0,807579</td>
<td>0,807579</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17,9571%</td>
<td>17,9571%</td>
<td>40,5</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>22,7105%</td>
<td>22,7105%</td>
<td>40,17</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-1,73767</td>
<td>-0,868835</td>
<td>18,2993%</td>
<td>80,67</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,611428 P-valor = 0,777144
Contraste de Bartlett: 1,0258 P-valor = 0,775268
Contraste de Hartley: 1,57353
Test de Levene: 0,024483 P-valor = 0,883242

Tabla ANOVA para ENN según Duplicado

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,01815</td>
<td>1</td>
<td>0,01815</td>
<td>0,00</td>
<td>0,9633</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>30,2482</td>
<td>4</td>
<td>7,56205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>30,2663</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resumen Estadístico para ENN

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>16,53</td>
<td>16,53</td>
<td>16,18</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>11,38</td>
<td>11,38</td>
<td>11,31</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>12,42</td>
<td>12,42</td>
<td>11,98</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>13,445</td>
<td>12,42</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>16,5263</td>
<td>0,245</td>
<td>0,494975</td>
<td>0,35</td>
</tr>
<tr>
<td>II</td>
<td>11,3848</td>
<td>0,01125</td>
<td>0,106066</td>
<td>0,075</td>
</tr>
<tr>
<td>III</td>
<td>12,4122</td>
<td>0,3872</td>
<td>0,622254</td>
<td>0,44</td>
</tr>
<tr>
<td>Total</td>
<td>13,2673</td>
<td>6,05327</td>
<td>2,46034</td>
<td>1,00443</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>16,18</td>
<td>16,88</td>
<td>0,7</td>
<td>16,18</td>
</tr>
<tr>
<td>II</td>
<td>11,31</td>
<td>11,46</td>
<td>0,15</td>
<td>11,31</td>
</tr>
<tr>
<td>III</td>
<td>11,98</td>
<td>12,86</td>
<td>0,88</td>
<td>11,98</td>
</tr>
<tr>
<td>Total</td>
<td>11,31</td>
<td>16,88</td>
<td>5,57</td>
<td>11,46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>16,18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>11,31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>12,86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11,31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>16,88</td>
<td>0,7</td>
<td>33,06</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>11,46</td>
<td>0,15</td>
<td>22,77</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>12,86</td>
<td>0,88</td>
<td>24,84</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-1,73767</td>
<td>-0,868835</td>
<td>18,2993%</td>
<td>80,67</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,601756 P-valor = 0,672812
Contraste de Bartlett: 2,09882 P-valor = 0,463064
Contraste de Hartley: 34,4178
Test de Levene: 2,75017E28 P-valor = 0,0

Tabla ANOVA para ENN según Dieta

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>29,6229</td>
<td>2</td>
<td>14,8114</td>
<td>69,06</td>
<td>0,0031</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>0,64345</td>
<td>3</td>
<td>0,214483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>30,2663</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contraste Múltiple de Rango para ENN según Dieta

Método: 95,0 porcentaje HSD de Tukey

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frec.</th>
<th>Media</th>
<th>Grupos homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>2</td>
<td>11,385</td>
<td>X</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>12,42</td>
<td>X</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>16,53</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - II</td>
<td>*5,145</td>
</tr>
<tr>
<td>I - III</td>
<td>*4,11</td>
</tr>
<tr>
<td>II - III</td>
<td>-1,035</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
HUMEDAD

Resumen Estadístico para Humedad

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>6,59</td>
<td>6,12</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>6,5933</td>
<td>6,11</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>6,5917</td>
<td>6,115</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,52549</td>
<td>1,3429</td>
<td>1,15884</td>
<td>0,669054</td>
</tr>
<tr>
<td>B</td>
<td>6,53451</td>
<td>1,22583</td>
<td>1,10717</td>
<td>0,639227</td>
</tr>
<tr>
<td>Total</td>
<td>6,53</td>
<td>1,0275</td>
<td>1,01366</td>
<td>0,413823</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5,74</td>
<td>7,91</td>
<td>2,17</td>
<td>5,74</td>
</tr>
<tr>
<td>B</td>
<td>5,81</td>
<td>7,86</td>
<td>2,05</td>
<td>5,81</td>
</tr>
<tr>
<td>Total</td>
<td>5,74</td>
<td>7,91</td>
<td>2,17</td>
<td>5,81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7,91</td>
<td>2,17</td>
<td>1,52489</td>
<td>1,07826</td>
</tr>
<tr>
<td>B</td>
<td>7,86</td>
<td>2,05</td>
<td>1,59009</td>
<td>1,12436</td>
</tr>
<tr>
<td>Total</td>
<td>7,86</td>
<td>2,05</td>
<td>0,869753</td>
<td>0,869753</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1,86652</td>
<td>-0,933259</td>
<td>17,5848%</td>
<td>19,77</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>16,7923%</td>
<td>19,78</td>
</tr>
<tr>
<td>Total</td>
<td>-1,86652</td>
<td>-0,933259</td>
<td>15,3778%</td>
<td>39,55</td>
</tr>
</tbody>
</table>

Contraste de Varianza

Contraste C de Cochran: 0,522787 P-valor = 0,954426
Contraste de Bartlett: 1,00104 P-valor = 0,954006
Contraste de Hartley: 1,0955
Test de Levene: 0,00271914 P-valor = 0,960913

Tabla ANOVA para Humedad según Duplicado

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,0000166667</td>
<td>1</td>
<td>0,0000166667</td>
<td>0,00</td>
<td>0,9973</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>5,13747</td>
<td>4</td>
<td>1,28437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>5,13748</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Resumen Estadístico para Humedad

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>5,775</td>
<td>5,775</td>
<td>5,74</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>7,885</td>
<td>7,885</td>
<td>7,86</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>6,115</td>
<td>6,115</td>
<td>6,11</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>6,59167</td>
<td>6,115</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5,77489</td>
<td>0,00245</td>
<td>0,0494975</td>
<td>0,035</td>
</tr>
<tr>
<td>II</td>
<td>7,88496</td>
<td>0,00125</td>
<td>0,0353553</td>
<td>0,025</td>
</tr>
<tr>
<td>III</td>
<td>6,115</td>
<td>0,00005</td>
<td>0,00707107</td>
<td>0,005</td>
</tr>
<tr>
<td>Total</td>
<td>6,53</td>
<td>1,0275</td>
<td>1,01366</td>
<td>0,413823</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5,74</td>
<td>5,81</td>
<td>0,07</td>
<td>5,74</td>
</tr>
<tr>
<td>II</td>
<td>7,86</td>
<td>7,91</td>
<td>0,05</td>
<td>7,86</td>
</tr>
<tr>
<td>III</td>
<td>6,11</td>
<td>6,12</td>
<td>0,01</td>
<td>6,11</td>
</tr>
<tr>
<td>Total</td>
<td>5,74</td>
<td>7,91</td>
<td>2,17</td>
<td>5,81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Segundo cuartil</th>
<th>Rango intercuart.</th>
<th>Asimetría</th>
<th>Asimetría típica</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5,81</td>
<td>0,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>7,91</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>6,12</td>
<td>0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7,86</td>
<td>2,05</td>
<td>0,869753</td>
<td>0,869753</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Curtosis</th>
<th>Curtosis típificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0,857099</td>
<td>0,857099%</td>
<td>15,55</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>0,448387</td>
<td>0,448387%</td>
<td>15,77</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0,115635</td>
<td>0,115635%</td>
<td>12,23</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-1,96652</td>
<td>-0,933259%</td>
<td>15,3778%</td>
<td>39,55</td>
</tr>
</tbody>
</table>

Contraste de Varianza

- Contraste C de Cochran: 0,653333 P-valor = 0,575129
- Contraste de Bartlett: 2,33648 P-valor = 0,414251
- Contraste de Hartley: 49,0
- Test de Levene: 1,77471E27 P-valor = 0,0

Tabla ANOVA para Humedad según Dieta

Análisis de la Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>5,13373</td>
<td>2</td>
<td>2,56687</td>
<td>2053,49</td>
<td>0,0000</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>0,00375</td>
<td>3</td>
<td>0,00125</td>
<td>0,005</td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>5,13748</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contraste Múltiple de Rango para Humedad según Dieta

Método: 95,0 porcentaje HSD de Tukey

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frec.</th>
<th>Media</th>
<th>Grupos homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>5,775</td>
<td>X</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>6,115</td>
<td>X</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>7,885</td>
<td></td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - II</td>
<td>*-2,11</td>
</tr>
<tr>
<td>I - III</td>
<td>*-0,34</td>
</tr>
<tr>
<td>II - III</td>
<td>*1,77</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.

Medias y 95,0 Porcentajes Intervalos HSD de Tukey

<table>
<thead>
<tr>
<th>Humedad</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROTEÍNAS

Resumen Estadístico para Proteínas

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>43,7633</td>
<td>43,61</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>43,7767</td>
<td>43,65</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>43,77</td>
<td>43,63</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>43,7623</td>
<td>0,133233</td>
<td>0,365011</td>
<td>0,210739</td>
</tr>
<tr>
<td>B</td>
<td>43,7651</td>
<td>1,52493</td>
<td>1,23488</td>
<td>0,712959</td>
</tr>
<tr>
<td>Total</td>
<td>43,7637</td>
<td>0,66332</td>
<td>0,814445</td>
<td>0,332496</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>43,5</td>
<td>44,18</td>
<td>0,68</td>
<td>43,5</td>
</tr>
<tr>
<td>B</td>
<td>42,61</td>
<td>45,07</td>
<td>2,46</td>
<td>42,61</td>
</tr>
<tr>
<td>Total</td>
<td>42,61</td>
<td>45,07</td>
<td>2,46</td>
<td>43,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>44,18</td>
<td>0,68</td>
<td>1,55677</td>
<td>1,1008</td>
</tr>
<tr>
<td>B</td>
<td>45,07</td>
<td>2,46</td>
<td>0,456726</td>
<td>0,322954</td>
</tr>
<tr>
<td>Total</td>
<td>44,18</td>
<td>0,68</td>
<td>0,377344</td>
<td>0,377344</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,834058%</td>
<td>131,29</td>
<td>131,29</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2,82087%</td>
<td>131,33</td>
<td>131,33</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,22925</td>
<td>0,614626</td>
<td>1,86074%</td>
<td>262,62</td>
</tr>
</tbody>
</table>

166
Contraste de Varianza

Contraste C de Cochran: 0,499496 P-valor = 0,87975
Contraste de Bartlett: 5,27919 P-valor = 0,177681
Contraste de Hartley: 495,063
Test de Levene: 1,43106E28 P-valor = 0,0

Tabla ANOVA para Proteínas según Duplicado

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0,000266667</td>
<td>1</td>
<td>0,000266667</td>
<td>0,00</td>
<td>0,9866</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>3,31633</td>
<td>4</td>
<td>0,829083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>3,3166</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resumen Estadístico para Proteínas

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>43,055</td>
<td>43,055</td>
<td>42,61</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>43,63</td>
<td>43,63</td>
<td>43,61</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>44,625</td>
<td>44,625</td>
<td>44,18</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>43,77</td>
<td>43,63</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>43,0527</td>
<td>0,39605</td>
<td>0,629325</td>
<td>0,445</td>
</tr>
<tr>
<td>II</td>
<td>43,63</td>
<td>0,0008</td>
<td>0,0282843</td>
<td>0,02</td>
</tr>
<tr>
<td>III</td>
<td>44,6228</td>
<td>0,39605</td>
<td>0,629325</td>
<td>0,445</td>
</tr>
<tr>
<td>Total</td>
<td>43,7637</td>
<td>0,66332</td>
<td>0,814445</td>
<td>0,332496</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>42,61</td>
<td>43,5</td>
<td>0,89</td>
<td>42,61</td>
</tr>
<tr>
<td>II</td>
<td>43,61</td>
<td>43,65</td>
<td>0,04</td>
<td>43,61</td>
</tr>
<tr>
<td>III</td>
<td>44,18</td>
<td>45,07</td>
<td>0,89</td>
<td>44,18</td>
</tr>
<tr>
<td>Total</td>
<td>42,61</td>
<td>45,07</td>
<td>2,46</td>
<td>43,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetria</th>
<th>Asimetria tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>43,5</td>
<td>0,89</td>
<td>0,377344</td>
<td>0,377344</td>
</tr>
<tr>
<td>II</td>
<td>43,65</td>
<td>0,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>45,07</td>
<td>0,89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>44,18</td>
<td>0,68</td>
<td>0,377344</td>
<td>0,377344</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1,46168%</td>
<td>86,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>0,0648276%</td>
<td>87,26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>1,41025%</td>
<td>89,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,22925</td>
<td>0,614626</td>
<td>1,86074%</td>
<td>262,62</td>
</tr>
</tbody>
</table>

Contraste de Varianza

Contraste C de Cochran: 0,499496 P-valor = 0,87975
Contraste de Bartlett: 5,27919 P-valor = 0,177681
Contraste de Hartley: 495,063
Test de Levene: 1,43106E28 P-valor = 0,0
Tabla ANOVA para Proteínas según Dieta

Análisis de la Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuadr.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>2,5237</td>
<td>2</td>
<td>1,26185</td>
<td>4,77</td>
<td>0,1169</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>0,7929</td>
<td>3</td>
<td>0,2643</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>3,3166</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALFA TOCOFEROL

Resumen Estadístico para Alpha Toc

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>13,2933</td>
<td>12,07</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>9,16</td>
<td>7,95</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>11,2267</td>
<td>10,28</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12,5567</td>
<td>30,4446</td>
<td>5,5176</td>
<td>3,1856</td>
</tr>
<tr>
<td>B</td>
<td>8,60634</td>
<td>16,2691</td>
<td>4,0335</td>
<td>2,32874</td>
</tr>
<tr>
<td>Total</td>
<td>10,3955</td>
<td>23,8108</td>
<td>4,87963</td>
<td>1,9921</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8,49</td>
<td>19,32</td>
<td>10,83</td>
<td>8,49</td>
</tr>
<tr>
<td>B</td>
<td>5,87</td>
<td>13,66</td>
<td>7,79</td>
<td>5,87</td>
</tr>
<tr>
<td>Total</td>
<td>5,87</td>
<td>19,32</td>
<td>13,45</td>
<td>7,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercuarter</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>19,32</td>
<td>10,83</td>
<td>0,948661</td>
<td>0,670805</td>
</tr>
<tr>
<td>B</td>
<td>13,66</td>
<td>7,79</td>
<td>1,22846</td>
<td>0,868652</td>
</tr>
<tr>
<td>Total</td>
<td>13,66</td>
<td>5,71</td>
<td>0,866934</td>
<td>0,866934</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>41,507%</td>
<td>39,88</td>
<td>44,0338</td>
<td>27,48</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0,319387</td>
<td>0,159693</td>
<td>43,4647%</td>
<td>67,36</td>
</tr>
</tbody>
</table>

Contraste de Varianza

Contraste C de Cochran: 0,651728 P-valor = 0,696545
Contraste de Bartlett: 1,04949 P-valor = 0,694208
Contraste de Hartley: 1,87132
Test de Levene: 0,14333 P-valor = 0,724229
Tabla ANOVA para Alpha Toc según Duplicado

Análisis de la Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>25,6267</td>
<td>1</td>
<td>25,6267</td>
<td>1,10</td>
<td>0,3540</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>93,4275</td>
<td>4</td>
<td>23,3569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>119,054</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resumen Estadístico para Alpha Toc

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>7,18</td>
<td>7,18</td>
<td>5,87</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>12,865</td>
<td>12,865</td>
<td>12,07</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>13,635</td>
<td>13,635</td>
<td>7,95</td>
</tr>
</tbody>
</table>

| Total | 6 | 11,2267| 10,28 | |

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>7,05948</td>
<td>3,4322</td>
<td>1,85262</td>
<td>1,31</td>
</tr>
<tr>
<td>II</td>
<td>12,8404</td>
<td>1,26405</td>
<td>1,1243</td>
<td>0,795</td>
</tr>
<tr>
<td>III</td>
<td>12,3933</td>
<td>64,6385</td>
<td>8,0398</td>
<td>5,685</td>
</tr>
</tbody>
</table>

| Total | 10,3955 | 23,8108 | 4,87963 | 1,9921 |

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5,87</td>
<td>8,49</td>
<td>2,62</td>
<td>5,87</td>
</tr>
<tr>
<td>II</td>
<td>12,07</td>
<td>13,66</td>
<td>1,59</td>
<td>12,07</td>
</tr>
<tr>
<td>III</td>
<td>7,95</td>
<td>19,32</td>
<td>11,37</td>
<td>7,95</td>
</tr>
</tbody>
</table>

| Total | 5,87 | 19,32 | 13,45 | 7,95 |

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>8,49</td>
<td>2,62</td>
<td>0,866934</td>
<td>0,866934</td>
</tr>
<tr>
<td>II</td>
<td>13,66</td>
<td>1,59</td>
<td>8,73921%</td>
<td>25,73</td>
</tr>
<tr>
<td>III</td>
<td>19,32</td>
<td>11,37</td>
<td>58,9645%</td>
<td>27,27</td>
</tr>
</tbody>
</table>

| Total | 13,66 | 5,71 | 0,319387 | 0,159693 |

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>125,8025%</td>
<td>14,36</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>8,73921%</td>
<td>25,73</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>58,9645%</td>
<td>27,27</td>
<td></td>
</tr>
</tbody>
</table>

| Total | 0,319387 | 0,159693 | 43,4647% | 67,36|

Contraste de Varianza

Contraste C de Cochran: 0,932267 P-valor = 0,103381
Contraste de Bartlett: 3,53091 P-valor = 0,269799
Contraste de Hartley: 51,136
Test de Levene: 3,6608E31 P-valor = 0,0
Tabla ANOVA para Alpha Toc según Dieta

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>49,7194</td>
<td>2</td>
<td>24,8597</td>
<td>1,08</td>
<td>0,4444</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>69,3347</td>
<td>3</td>
<td>23,1116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>119,054</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BETA TOCOFEROL

Resumen Estadístico para Beta Toc

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>1,6467</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>2,9833</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>2,315</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8,13453</td>
<td>2,85211</td>
<td>1,6467</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>26,7008</td>
<td>5,16728</td>
<td>2,98333</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14,4701</td>
<td>3,80397</td>
<td>1,55296</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,0</td>
<td>4,94</td>
<td>4,94</td>
<td>0,0</td>
</tr>
<tr>
<td>B</td>
<td>0,0</td>
<td>8,95</td>
<td>8,95</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>0,0</td>
<td>8,95</td>
<td>8,95</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercuart.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4,94</td>
<td>4,94</td>
<td>1,73205</td>
<td>1,22474</td>
</tr>
<tr>
<td>B</td>
<td>8,95</td>
<td>1,73205</td>
<td>1,22474</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4,94</td>
<td>1,42008</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>173,205%</td>
<td></td>
<td></td>
<td>4,94</td>
</tr>
<tr>
<td>B</td>
<td>173,205%</td>
<td></td>
<td></td>
<td>8,95</td>
</tr>
<tr>
<td>Total</td>
<td>0,771924</td>
<td>0,385962</td>
<td>164,318%</td>
<td>13,89</td>
</tr>
</tbody>
</table>

Contraste de Varianza

Contraste C de Cochran: 0,766486 P-valor = 0,467027
Contraste de Bartlett: 1,18185 P-valor = 0,464656
Contraste de Hartley: 3,28241
Test de Levene: 0,153868 P-valor = 0,71487

170
Tabla ANOVA para Beta Toc según Duplicado

Análisis de la Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>2,68002</td>
<td>1</td>
<td>2,68002</td>
<td>0,15</td>
<td>0,7149</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>69,6707</td>
<td>4</td>
<td>17,4177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>72,3507</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resumen Estadístico para Beta Toc

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>6,945</td>
<td>6,945</td>
<td>4,94</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>2,315</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>II</td>
<td>6,64929</td>
<td>8,04005</td>
<td>2,8355</td>
<td>2,005</td>
</tr>
<tr>
<td>III</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14,4701</td>
<td>3,80397</td>
<td>1,55296</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primero cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>II</td>
<td>4,94</td>
<td>8,95</td>
<td>4,01</td>
<td>4,94</td>
</tr>
<tr>
<td>III</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>8,95</td>
<td>4,94</td>
<td>1,42008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Segundo cuartil</th>
<th>Rango intercuart.</th>
<th>Asimetría</th>
<th>Asimetría tip.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>II</td>
<td>8,95</td>
<td>4,01</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>III</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4,94</td>
<td>4,94</td>
<td>1,42008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>%</td>
<td></td>
<td>0,0</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>40,8279%</td>
<td>13,89</td>
<td>13,89</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>%</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0,771924</td>
<td>0,385962</td>
<td>164,318%</td>
</tr>
</tbody>
</table>

No se pueden ejecutar los contrastes de varianzas.

Tabla ANOVA para Beta Toc según Dieta

Análisis de la Varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>64,3107</td>
<td>2</td>
<td>32,1553</td>
<td>12,00</td>
<td>0,0370</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>8,04005</td>
<td>3</td>
<td>2,68002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>72,3507</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contraste Múltiple de Rango para Beta Toc según Dieta

Método: 95,0 porcentaje HSD de Tukey

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frec.</th>
<th>Media</th>
<th>Grupos homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>0,0</td>
<td>X</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>0,0</td>
<td>X</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>6,945</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - II</td>
<td>*-6,945</td>
</tr>
<tr>
<td>I - III</td>
<td>0,0</td>
</tr>
<tr>
<td>II - III</td>
<td>*6,945</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.

GAMMA TOCOFEROL

Resumen Estadístico para Gamma Toc

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>11,2633</td>
<td>7,92</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>14,6467</td>
<td>9,89</td>
<td></td>
</tr>
</tbody>
</table>

Total

- Media geométrica: 12,955
- Varianza: 8,905
- Desviación típica: 9,56135
- Error estándar: 3,90341

Gráfica de Medias y 95,0 Porcentajes Interválos HSD de Tukey

Duplicado

- Minimo: 5,06
- Maximo: 28,54
- Rango: 23,48
- Primer cuartil: 5,06
- Segundo cuartil: 20,81
- Rango intercuart. Asimetria: 15,75
- Asimetria tipi.: 5,51

Estadísticos

- Curtosis: -0,345818
- Curtosis tipificada: 74,49324
- Coef. de variación: 83,4979%
- Suma: 43,94

Total

- Media: -0,345818
- Medianas: 73,8644%
Contraste de Varianza

Contraste C de Cochran: 0,679952 P-valor = 0,640097
Contraste de Bartlett: 1,07182 P-valor = 0,637554
Contraste de Hartley: 2,12453
Test de Levene: 0,125355 P-valor = 0,741173

Tabla ANOVA para Gamma Toc según Duplicado

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>17,1704</td>
<td>1</td>
<td>17,1704</td>
<td>0,16</td>
<td>0,7129</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>439,927</td>
<td>4</td>
<td>109,982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>457,098</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resumen Estadístico para Gamma Toc

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>5,285</td>
<td>5,285</td>
<td>5,06</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>24,675</td>
<td>24,675</td>
<td>20,81</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>8,905</td>
<td>8,905</td>
<td>7,92</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>12,955</td>
<td>8,905</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Med. geométrica</th>
<th>Varianza</th>
<th>Desv. típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5,28021</td>
<td>0,10125</td>
<td>0,318198</td>
<td>0,225</td>
</tr>
<tr>
<td>II</td>
<td>24,3704</td>
<td>29,8765</td>
<td>5,46594</td>
<td>3,865</td>
</tr>
<tr>
<td>III</td>
<td>8,85036</td>
<td>1,94045</td>
<td>1,393</td>
<td>0,985</td>
</tr>
<tr>
<td>Total</td>
<td>10,443</td>
<td>91,4195</td>
<td>9,56136</td>
<td>3,90341</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5,06</td>
<td>5,51</td>
<td>0,45</td>
<td>5,06</td>
</tr>
<tr>
<td>II</td>
<td>20,81</td>
<td>28,54</td>
<td>7,73</td>
<td>20,81</td>
</tr>
<tr>
<td>III</td>
<td>9,89</td>
<td>1,97</td>
<td></td>
<td>7,92</td>
</tr>
<tr>
<td>Total</td>
<td>5,06</td>
<td>28,54</td>
<td>23,48</td>
<td>5,51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Segundo cuartil</th>
<th>Rango intercuart.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5,51</td>
<td>0,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>28,54</td>
<td>7,73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>9,89</td>
<td>1,97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20,81</td>
<td>15,3</td>
<td>1,10135</td>
<td>1,10135</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6,02078%</td>
<td>10,57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>22,1617%</td>
<td>49,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>15,6429%</td>
<td>17,81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-0,345818</td>
<td>-0,172909</td>
<td>73,8044%</td>
<td>77,73</td>
</tr>
</tbody>
</table>
Contraste de Varianza

Contraste C de Cochran: 0,936033 P-valor = 0,0975356
Contraste de Bartlett: 5,89804 P-valor = 0,158362
Contraste de Hartley: 295,076
Test de Levene: 2,67071E30 P-valor = 0,0

Tabla ANOVA para Gamma Toc según Dieta

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>425,18</td>
<td>2</td>
<td>212,59</td>
<td>19,98</td>
<td>0,0185</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>31,9182</td>
<td>3</td>
<td>10,6394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>457,098</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contraste Múltiple de Rango para Gamma Toc según Dieta

<table>
<thead>
<tr>
<th>Método: 95,0 porcentaje HSD de Tukey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieta</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - II</td>
<td>*-19,39</td>
<td>13,6195</td>
</tr>
<tr>
<td>I - III</td>
<td>-3,62</td>
<td>13,6195</td>
</tr>
<tr>
<td>II - III</td>
<td>*15,77</td>
<td>13,6195</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.

Medias y 95,0 Porcentajes Intervalos HSD de Tukey
DELTA TOCOFEROL

Resumen Estadístico para Delta Toc

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>29,6933</td>
<td>38,63</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>34,1233</td>
<td>37,36</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>31,9083</td>
<td>37,995</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>23,3904</td>
<td>364,924</td>
<td>19,103</td>
<td>11,0291</td>
</tr>
<tr>
<td>B</td>
<td>28,726</td>
<td>429,954</td>
<td>20,7353</td>
<td>11,9716</td>
</tr>
<tr>
<td>Total</td>
<td>25,9213</td>
<td>323,839</td>
<td>17,9955</td>
<td>7,34664</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7,76</td>
<td>42,69</td>
<td>34,93</td>
<td>7,76</td>
</tr>
<tr>
<td>B</td>
<td>11,96</td>
<td>53,05</td>
<td>41,09</td>
<td>11,96</td>
</tr>
<tr>
<td>Total</td>
<td>7,76</td>
<td>53,05</td>
<td>45,29</td>
<td>11,96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>42,69</td>
<td>34,93</td>
<td>-1,64445</td>
<td>-1,1628</td>
</tr>
<tr>
<td>B</td>
<td>53,05</td>
<td>41,09</td>
<td>-0,685309</td>
<td>-0,484587</td>
</tr>
<tr>
<td>Total</td>
<td>42,69</td>
<td>30,73</td>
<td>-0,558614</td>
<td>-0,558614</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1,47998</td>
<td>-0,73992</td>
<td>64,3343%</td>
<td>89,08</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>60,7658%</td>
<td>102,37</td>
</tr>
<tr>
<td>Total</td>
<td>-1,47998</td>
<td>-0,73992</td>
<td>56,3976%</td>
<td>191,45</td>
</tr>
</tbody>
</table>

Contraste de Varianza

Contraste C de Cochran: 0,540906 P-valor = 0,918189
Contraste de Bartlett: 1,00336 P-valor = 0,917441
Contraste de Hartley: 1,1782
Test de Levene: 0,0283829 P-valor = 0,874387

Tabla ANOVA para Delta Toc según Duplicado

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>29,4374</td>
<td>1</td>
<td>29,4374</td>
<td>0,07</td>
<td>0,7990</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>1589,76</td>
<td>4</td>
<td>397,439</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>1619,19</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Resumen Estadístico para Delta Toc

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>37,95</td>
<td>37,95</td>
<td>37,36</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>47,87</td>
<td>47,87</td>
<td>42,69</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>9,86</td>
<td>9,86</td>
<td>7,76</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6</td>
<td>31,9083</td>
<td>37,995</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>37,9977</td>
<td>0,80645</td>
<td>0,898026</td>
<td>0,635</td>
</tr>
<tr>
<td>II</td>
<td>47,5889</td>
<td>53,6648</td>
<td>7,32563</td>
<td>5,18</td>
</tr>
<tr>
<td>III</td>
<td>9,63377</td>
<td>8,82</td>
<td>2,96985</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>25,9213</td>
<td>323,839</td>
<td>17,955</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>37,36</td>
<td>38,63</td>
<td>1,27</td>
<td>37,36</td>
</tr>
<tr>
<td>II</td>
<td>42,69</td>
<td>53,05</td>
<td>10,36</td>
<td>42,69</td>
</tr>
<tr>
<td>III</td>
<td>7,76</td>
<td>11,96</td>
<td>4,2</td>
<td>7,76</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7,76</td>
<td>53,05</td>
<td>45,29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Segundo cuartil</th>
<th>Rango intercuartil</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>38,63</td>
<td>1,27</td>
<td>2,38354%</td>
<td>75,99</td>
</tr>
<tr>
<td>II</td>
<td>53,05</td>
<td>10,36</td>
<td>15,3032%</td>
<td>95,74</td>
</tr>
<tr>
<td>III</td>
<td>11,96</td>
<td>4,2</td>
<td>30,1202%</td>
<td>19,72</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>42,69</td>
<td>-0,558614</td>
<td>-0,558614</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-1,47998</td>
<td>-0,73992</td>
<td>2,36354%</td>
<td>75,99</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td>15,3032%</td>
<td>95,74</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td>30,1202%</td>
<td>19,72</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>-1,47998</td>
<td>56,3976%</td>
</tr>
</tbody>
</table>

Contraste de Varianza

- Contraste C de Cochran: 0,847902 P-valor = 0,237552
- Contraste de Bartlett: 2,90833 P-valor = 0,330007
- Contraste de Hartley: 66,5445
- Test de Levene: 1,20388E30 P-valor = 0,0

Tabla ANOVA para Delta Toc según Dieta

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>1555,9</td>
<td>2</td>
<td>777,951</td>
<td>36,87</td>
<td>0,0077</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>63,2913</td>
<td>3</td>
<td>21,0971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>1619,19</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

176
Contraste Múltiple de Rango para Delta Toc según Dieta

Método: 95,0 porcentaje HSD de Tukey

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frec.</th>
<th>Media</th>
<th>Grupos homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>2</td>
<td>9,86</td>
<td>X</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>37,995</td>
<td>X</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>47,87</td>
<td>X</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - II</td>
<td>-9,075</td>
</tr>
<tr>
<td>I - III</td>
<td>*28,135</td>
</tr>
<tr>
<td>II - III</td>
<td>*38,01</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.

Medias y 95,0 Porcentajes Intervalos HSD de Tukey

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Delta Toc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

TOCOFEROLES TOTALES

Resumen Estadístico para Toc Tot

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>55,9</td>
<td>52,18</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>60,9133</td>
<td>48,74</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>58,4067</td>
<td>50,46</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>52,7856</td>
<td>527,941</td>
<td>22,977</td>
<td>13,2658</td>
</tr>
<tr>
<td>B</td>
<td>53,2913</td>
<td>1494,98</td>
<td>38,665</td>
<td>22,3233</td>
</tr>
<tr>
<td>Total</td>
<td>53,0379</td>
<td>816,71</td>
<td>28,5781</td>
<td>11,667</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>35,01</td>
<td>80,51</td>
<td>45,5</td>
<td>35,01</td>
</tr>
<tr>
<td>B</td>
<td>29,8</td>
<td>104,2</td>
<td>74,4</td>
<td>29,8</td>
</tr>
<tr>
<td>Total</td>
<td>29,8</td>
<td>104,2</td>
<td>74,4</td>
<td>35,01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Segundo cuartil</th>
<th>Rango intercuar.</th>
<th>Asimetría</th>
<th>Asimetría tipi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>80,51</td>
<td>45,5</td>
<td>0,709459</td>
<td>0,501663</td>
</tr>
<tr>
<td>B</td>
<td>104,2</td>
<td>74,4</td>
<td>1,27635</td>
<td>0,902513</td>
</tr>
<tr>
<td>Total</td>
<td>80,51</td>
<td>45,5</td>
<td>0,892885</td>
<td>0,892885</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicado</th>
<th>Curtosis</th>
<th>Curtosis tipificada</th>
<th>Coef. de variación</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>41,1037%</td>
<td>167,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>63,4754%</td>
<td>182,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-0,356497</td>
<td>-0,178248</td>
<td>48,9296%</td>
<td>350,44</td>
</tr>
</tbody>
</table>
Contraste de Varianza
Contraste C de Cochran: 0,739021 P-valor = 0,521959
Contraste de Bartlett: 1,13851 P-valor = 0,519382
Contraste de Hartley: 2,83172 P-valor = 0,625388

Tabla ANOVA para Toc Tot según Duplicado

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>37,7003</td>
<td>1</td>
<td>37,7003</td>
<td>0,04</td>
<td>0,8563</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>4045,85</td>
<td>4</td>
<td>1011,46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>4083,55</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resumen Estadístico para Toc Tot

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Frecuencia</th>
<th>Media</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>50,46</td>
<td>50,46</td>
<td>48,74</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>92,35</td>
<td>92,35</td>
<td>80,51</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>32,40</td>
<td>32,40</td>
<td>29,8</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>58,40</td>
<td>50,46</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Media geométrica</th>
<th>Varianza</th>
<th>Desviación típica</th>
<th>Error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>50,4307</td>
<td>5,9168</td>
<td>2,43245</td>
<td>1,72</td>
</tr>
<tr>
<td>II</td>
<td>91,5923</td>
<td>280,608</td>
<td>16,7514</td>
<td>11,845</td>
</tr>
<tr>
<td>III</td>
<td>32,3001</td>
<td>13,572</td>
<td>3,68403</td>
<td>2,605</td>
</tr>
<tr>
<td>Total</td>
<td>53,0379</td>
<td>816,71</td>
<td>28,5781</td>
<td>11,667</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieta</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Rango</th>
<th>Primer cuartil</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>48,74</td>
<td>52,18</td>
<td>3,44</td>
<td>48,74</td>
</tr>
<tr>
<td>II</td>
<td>80,51</td>
<td>104,2</td>
<td>23,69</td>
<td>80,51</td>
</tr>
<tr>
<td>III</td>
<td>29,8</td>
<td>35,01</td>
<td>5,21</td>
<td>29,8</td>
</tr>
<tr>
<td>Total</td>
<td>29,8</td>
<td>104,2</td>
<td>74,4</td>
<td>35,01</td>
</tr>
</tbody>
</table>

Contraste de Varianza
Contraste C de Cochran: 0,935058 P-valor = 0,0990479
Contraste de Bartlett: 3,54157 P-valor = 0,268956
Contraste de Hartley: 47,4256 Test de Levene: 2,9697E31 P-valor = 0,0
Tabla ANOVA para Toc Tot según Dieta

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Sumas de cuad.</th>
<th>Gl</th>
<th>Cuadrado Medio</th>
<th>Cociente-F</th>
<th>P-Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>3783,45</td>
<td>2</td>
<td>1891,73</td>
<td>18,91</td>
<td>0,0199</td>
</tr>
<tr>
<td>Intra grupos</td>
<td>300,097</td>
<td>3</td>
<td>100,032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (Corr.)</td>
<td>4083,55</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contraste Múltiple de Rango para Toc Tot según Dieta

<table>
<thead>
<tr>
<th>Método: 95,0 porcentaje HSD de Tukey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieta</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
</tbody>
</table>

Contraste

<table>
<thead>
<tr>
<th>Contraste</th>
<th>Diferencias</th>
<th>+/- Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - II</td>
<td>*-41,895</td>
<td>41,7612</td>
</tr>
<tr>
<td>I - III</td>
<td>18,055</td>
<td>41,7612</td>
</tr>
<tr>
<td>II - III</td>
<td>*59,95</td>
<td>41,7612</td>
</tr>
</tbody>
</table>

* indica una diferencia significativa.
ANEXO N°7

TABLAS DE VALORES PROMEDIO PARA CADA PARÁMETRO ANÁLIZADO EN ESTE ESTUDIO

Tabla N° 1: Composición proximal, contenido de tocoferoles y estabilidad oxidativa de las dietas de engorda suministradas a salmón coho:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad (%)</td>
<td>5,78 ± 0,05<sup>a</sup></td>
<td>7,88 ± 0,04<sup>b</sup></td>
<td>6,11 ± 0,01<sup>c</sup></td>
</tr>
<tr>
<td>Proteínas (%)</td>
<td>43,06 ± 0,63<sup>a</sup></td>
<td>43,63 ± 0,03<sup>a</sup></td>
<td>44,62 ± 0,63<sup>a</sup></td>
</tr>
<tr>
<td>Lípidos (%)</td>
<td>28,60 ± 0,07<sup>a</sup></td>
<td>30,68 ± 0,05<sup>b</sup></td>
<td>30,46 ± 0,05<sup>b</sup></td>
</tr>
<tr>
<td>Cenizas (%)</td>
<td>6,03 ± 0,02<sup>a</sup></td>
<td>6,43 ± 0,07<sup>b</sup></td>
<td>6,39 ± 0,05<sup>b</sup></td>
</tr>
<tr>
<td>ENN (%)</td>
<td>16,53 ± 0,50<sup>a</sup></td>
<td>11,38 ± 0,11<sup>b</sup></td>
<td>12,42 ± 0,63<sup>b</sup></td>
</tr>
<tr>
<td>α-tocoferol (mg/kg)</td>
<td>7,18 ± 1,85<sup>a</sup></td>
<td>12,86 ± 1,12<sup>a</sup></td>
<td>13,64 ± 8,04<sup>a</sup></td>
</tr>
<tr>
<td>β-tocoferol (mg/kg)</td>
<td>0,00 ± 0,00<sup>a</sup></td>
<td>6,94 ± 2,83<sup>b</sup></td>
<td>0,00 ± 0,00<sup>a</sup></td>
</tr>
<tr>
<td>γ-tocoferol (mg/kg)</td>
<td>5,28 ± 0,32<sup>a</sup></td>
<td>24,68 ± 5,47<sup>b</sup></td>
<td>8,90 ± 1,39<sup>a</sup></td>
</tr>
<tr>
<td>δ-tocoferol (mg/kg)</td>
<td>38,00 ± 0,90<sup>a</sup></td>
<td>47,87 ± 7,32<sup>a</sup></td>
<td>9,86 ± 2,97<sup>b</sup></td>
</tr>
<tr>
<td>Tocoferoles totales (mg/kg)</td>
<td>50,46± 2,43<sup>a</sup></td>
<td>92,35± 16,75<sup>b</sup></td>
<td>32,40± 3,68<sup>a</sup></td>
</tr>
<tr>
<td>Tiempo de inducción (h)</td>
<td><0,5<sup>a</sup></td>
<td><0,5<sup>x</sup></td>
<td><0,5<sup>a</sup></td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=2)

a,b,c indican diferencias significativas entre dietas para un mismo parámetro (P≤ 0,05).

Tabla N° 2: Composición proximal del músculo de salmones alimentados con las 3 dietas, al inicio y final del estudio:

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad (%)</td>
<td>69,44 ± 0,29<sup>x</sup></td>
<td>58,22 ± 0,04<sup>y</sup></td>
<td>65,81 ± 0,39<sup>x</sup></td>
</tr>
<tr>
<td>Proteinas (%)</td>
<td>19,01 ± 0,40<sup>x</sup></td>
<td>24,76 ± 0,28<sup>y</sup></td>
<td>19,14 ± 0,35<sup>x</sup></td>
</tr>
<tr>
<td>Lípidos (%)</td>
<td>10,10 ± 1,86<sup>x</sup></td>
<td>14,44 ± 0,81<sup>y</sup></td>
<td>12,12 ± 1,70<sup>x</sup></td>
</tr>
<tr>
<td>Cenizas (%)</td>
<td>1,27 ± 0,00<sup>x</sup></td>
<td>1,29 ± 0,02<sup>x</sup></td>
<td>1,28 ± 0,05<sup>x</sup></td>
</tr>
<tr>
<td>ENN (%)</td>
<td>0,19 ± 0,10<sup>x</sup></td>
<td>1,28 ± 0,26<sup>y</sup></td>
<td>1,65 ± 0,001<sup>x</sup></td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=2)

x,y indican diferencias significativas entre tiempos de almacenamiento para un mismo parámetro (P≤ 0,05)
Tabla Nº 3: Porcentaje de humedad de músculo de salmón coho alimentado con las 3 dietas, a través del tiempo:

<table>
<thead>
<tr>
<th>TIEMPO (Mes)</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(^x)</td>
<td>69,44 ± 0,29</td>
<td>65,81 ± 0,39</td>
<td>67,31 ± 0,86</td>
</tr>
<tr>
<td>3(^x)</td>
<td>64,77 ± 0,47</td>
<td>68,01 ± 0,06</td>
<td>68,77 ± 1,70</td>
</tr>
<tr>
<td>6(^x)</td>
<td>66,80 ± 0,34</td>
<td>66,79 ± 0,33</td>
<td>69,52 ± 0,26</td>
</tr>
<tr>
<td>9(^x)</td>
<td>68,80 ± 0,11</td>
<td>69,66 ± 0,26</td>
<td>69,57 ± 0,56</td>
</tr>
<tr>
<td>12(^y)</td>
<td>58,22 ± 0,04</td>
<td>57,51 ± 0,84</td>
<td>58,00 ± 0,53</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=2)
x, y indican diferencias significativas entre tiempos de almacenamiento (P\(\leq\) 0,05)

Tabla Nº 4: Porcentaje de lípidos en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo:

<table>
<thead>
<tr>
<th>TIEMPO (Mes)</th>
<th>Dieta I (Control)(^A)</th>
<th>Dieta II (Exceso de tocoferoles)(^B)</th>
<th>Dieta III (Tocoferoles y extracto de romero)(^B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(^x)</td>
<td>10,10 ± 0,44</td>
<td>12,12 ± 1,70</td>
<td>10,74 ± 1,52</td>
</tr>
<tr>
<td>3(^x)</td>
<td>9,09 ± 1,95</td>
<td>12,94 ± 3,18</td>
<td>11,73 ± 1,75</td>
</tr>
<tr>
<td>6(^x)</td>
<td>9,47 ± 2,05</td>
<td>11,59 ± 2,64</td>
<td>11,13 ± 1,66</td>
</tr>
<tr>
<td>9(^x)</td>
<td>9,68 ± 0,44</td>
<td>11,68 ± 0,87</td>
<td>14,65 ± 1,96</td>
</tr>
<tr>
<td>12(^y)</td>
<td>14,44 ± 0,81</td>
<td>15,98 ± 2,55</td>
<td>17,18 ± 2,56</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)
A, B indican diferencias significativas entre dietas (P\(\leq\) 0,05)
x, y indican diferencias significativas entre tiempos de almacenamiento (P\(\leq\) 0,05)

Tabla Nº 5: Porcentaje de EPA (20:5 \(\omega\)3) y DHA (22:6 \(\omega\)3) en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo:

<table>
<thead>
<tr>
<th>TIEMPO (Mes)</th>
<th>Dieta I (Control)(^A)</th>
<th>Dieta II (Exceso de tocoferoles)(^B)</th>
<th>Dieta III (Tocoferoles y extracto de romero)(^B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(^x)</td>
<td>11,31 ± 3,35 (^x)</td>
<td>23,84 ± 8,06 (^a)</td>
<td>6,20 ± 0,57 (^x)</td>
</tr>
<tr>
<td>3(^x)</td>
<td>9,27 ± 0,35 (^x)(^y)</td>
<td>19,87 ± 1,82 (^m)(^x)</td>
<td>5,77 ± 0,27 (^x)(^y)</td>
</tr>
<tr>
<td>6(^x)</td>
<td>8,26 ± 1,02 (^y)</td>
<td>17,61 ± 1,88 (^y)</td>
<td>4,77 ± 0,65 (^y)</td>
</tr>
<tr>
<td>9(^x)</td>
<td>8,62 ± 0,50 (^y)</td>
<td>18,15 ± 3,57 (^x)(^y)</td>
<td>5,09 ± 0,86 (^y)</td>
</tr>
<tr>
<td>12(^y)</td>
<td>10,37 ± 1,09 (^x)</td>
<td>27,41 ± 6,93 (^z)</td>
<td>7,46 ± 0,61 (^x)</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)
A, B indican diferencias significativas entre dietas (P\(\leq\) 0,05) para un mismo parámetro
w, x, y, z indican diferencias significativas entre tiempos de almacenamiento (P\(\leq\) 0,05) para un mismo parámetro

181
Tabla Nº 6: Índice de polienos en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo de almacenamiento:

<table>
<thead>
<tr>
<th>TIEMPO (Mes)</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,58 ± 0,30</td>
<td>1,55 ± 0,08</td>
<td>1,61 ± 0,11</td>
</tr>
<tr>
<td>3</td>
<td>1,41 ± 0,09</td>
<td>1,39 ± 0,10</td>
<td>1,58 ± 0,16</td>
</tr>
<tr>
<td>6</td>
<td>1,29 ± 0,08</td>
<td>1,29 ± 0,08</td>
<td>1,62 ± 0,05</td>
</tr>
<tr>
<td>9</td>
<td>1,35 ± 0,20</td>
<td>1,41 ± 0,15</td>
<td>1,49 ± 0,19</td>
</tr>
<tr>
<td>12</td>
<td>1,78 ± 0,27</td>
<td>2,02 ± 0,05</td>
<td>2,09 ± 0,18</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)

A,B indican diferencias significativas entre dietas (P ≤ 0,05)

x,y indican diferencias significativas entre tiempos de almacenamiento (P ≤ 0,05)

Tabla Nº 7: Índice de peróxidos (IP) en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo de almacenamiento:

<table>
<thead>
<tr>
<th>TIEMPO (Mes)</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,91 ± 1,01</td>
<td>3,12 ± 0,81</td>
<td>3,29 ± 0,82</td>
</tr>
<tr>
<td>3</td>
<td>3,29 ± 0,60</td>
<td>3,05 ± 0,71</td>
<td>3,33 ± 0,97</td>
</tr>
<tr>
<td>6</td>
<td>9,83 ± 0,99</td>
<td>13,59 ± 3,88</td>
<td>9,39 ± 3,08</td>
</tr>
<tr>
<td>9</td>
<td>10,26 ± 0,46</td>
<td>13,40 ± 1,37</td>
<td>10,04 ± 0,46</td>
</tr>
<tr>
<td>12</td>
<td>7,69 ± 0,62</td>
<td>9,80 ± 1,14</td>
<td>9,38 ± 0,68</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)

x,y indican diferencias significativas entre tiempos de almacenamiento (P ≤ 0,05)

Tabla Nº 8: Valor de p-anisidina en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo de almacenamiento congelado:

<table>
<thead>
<tr>
<th>TIEMPO (Mes)</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,87 ± 0,57</td>
<td>3,32 ± 0,52</td>
<td>1,77 ± 0,30</td>
</tr>
<tr>
<td>3</td>
<td>2,94 ± 0,57</td>
<td>2,66 ± 0,22</td>
<td>2,35 ± 0,05</td>
</tr>
<tr>
<td>6</td>
<td>3,61 ± 0,68</td>
<td>5,17 ± 0,95</td>
<td>3,25 ± 1,01</td>
</tr>
<tr>
<td>9</td>
<td>4,71 ± 0,57</td>
<td>8,04 ± 0,54</td>
<td>7,18 ± 0,59</td>
</tr>
<tr>
<td>12</td>
<td>7,03 ± 0,76</td>
<td>8,78 ± 0,36</td>
<td>8,22 ± 0,12</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)

x,y indican diferencias significativas entre tiempos de almacenamiento (P ≤ 0,05)
Tabla N° 9: Contenido de NBVT en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo:

<table>
<thead>
<tr>
<th>TIEMPO (Mes)</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7,63 ± 0,45</td>
<td>6,34 ± 0,82</td>
<td>4,78 ± 1,41</td>
</tr>
<tr>
<td>3</td>
<td>7,77 ± 2,57</td>
<td>6,73 ± 1,23</td>
<td>6,47 ± 3,58</td>
</tr>
<tr>
<td>6</td>
<td>8,07 ± 1,96</td>
<td>6,99 ± 1,07</td>
<td>7,44 ± 1,29</td>
</tr>
<tr>
<td>9</td>
<td>9,71 ± 2,10</td>
<td>10,86 ± 1,05</td>
<td>7,68 ± 0,72</td>
</tr>
<tr>
<td>12</td>
<td>9,79 ± 1,34</td>
<td>9,19 ± 0,70</td>
<td>8,40 ± 1,00</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)
A,B indican diferencias significativas entre dietas (P≤ 0,05)
x,y,z indican diferencias significativas entre tiempos de almacenamiento (P≤ 0,05)

Tabla N° 10: Contenido de DMA en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo de almacenamiento congelado:

<table>
<thead>
<tr>
<th>TIEMPO (Mes)</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,10 ± 0,05</td>
<td>0,19 ± 0,13</td>
<td>0,18 ± 0,11</td>
</tr>
<tr>
<td>3</td>
<td>0,11 ± 0,08</td>
<td>0,35 ± 0,23</td>
<td>0,21 ± 0,03</td>
</tr>
<tr>
<td>6</td>
<td>0,26 ± 0,24</td>
<td>0,51 ± 0,36</td>
<td>0,48 ± 0,45</td>
</tr>
<tr>
<td>9</td>
<td>0,42 ± 0,23</td>
<td>0,32 ± 0,11</td>
<td>0,41 ± 0,14</td>
</tr>
<tr>
<td>12</td>
<td>0,44 ± 0,13</td>
<td>0,30 ± 0,09</td>
<td>0,36 ± 0,13</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)
x,y,z indican diferencias significativas entre tiempos de almacenamiento (P≤ 0,05)

Tabla N° 11: Contenido de HCHO en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo de conservación al estado congelado:

<table>
<thead>
<tr>
<th>TIEMPO (Mes)</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
</tr>
<tr>
<td>3</td>
<td>0,23 ± 0,07</td>
<td>0,31 ± 0,17</td>
<td>0,30 ± 0,11</td>
</tr>
<tr>
<td>6</td>
<td>0,65 ± 0,22</td>
<td>0,63 ± 0,05</td>
<td>0,63 ± 0,02</td>
</tr>
<tr>
<td>9</td>
<td>0,64 ± 0,02</td>
<td>0,65 ± 0,05</td>
<td>0,67 ± 0,03</td>
</tr>
<tr>
<td>12</td>
<td>0,78 ± 0,03</td>
<td>0,72 ± 0,05</td>
<td>0,71 ± 0,04</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)
w,x,y,z indican diferencias significativas entre tiempos de almacenamiento (P≤ 0,05)
Tabla Nº 12: Valor pH en músculo de salmón coho alimentado con las 3 dietas, a través del tiempo de almacenamiento congelado:

<table>
<thead>
<tr>
<th>TIEMPO (Mes)</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (^x)</td>
<td>6,34 ± 0,12</td>
<td>6,22 ± 0,16</td>
<td>6,31 ± 0,08</td>
</tr>
<tr>
<td>3 (^x,y)</td>
<td>6,26 ± 0,11</td>
<td>6,25 ± 0,05</td>
<td>6,25 ± 0,15</td>
</tr>
<tr>
<td>6 (^x,y)</td>
<td>6,18 ± 0,07</td>
<td>6,23 ± 0,09</td>
<td>6,21 ± 0,06</td>
</tr>
<tr>
<td>9 (^y)</td>
<td>6,13 ± 0,03</td>
<td>6,17 ± 0,03</td>
<td>6,12 ± 0,04</td>
</tr>
<tr>
<td>12 (^x,y)</td>
<td>6,22 ± 0,05</td>
<td>6,25 ± 0,06</td>
<td>6,35 ± 0,04</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)
\(x,y \) indican diferencias significativas entre tiempos de almacenamiento (P≤ 0,05)

Tabla Nº 13: Contenido de \(\alpha \)-tocoferol en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo:

<table>
<thead>
<tr>
<th>TIEMPO (Mes)</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (^x,y)</td>
<td>209,37 ± 55,94</td>
<td>212,60 ± 37,64</td>
<td>246,81 ± 57,03</td>
</tr>
<tr>
<td>3 (^y)</td>
<td>264,59 ± 75,33</td>
<td>266,49 ± 38,06</td>
<td>336,79 ± 36,04</td>
</tr>
<tr>
<td>6 (^x,y)</td>
<td>297,43 ± 79,07</td>
<td>128,32 ± 74,47</td>
<td>173,38 ± 39,38</td>
</tr>
<tr>
<td>9 (^x)</td>
<td>167,42 ± 57,86</td>
<td>159,69 ± 44,01</td>
<td>133,77 ± 52,46</td>
</tr>
<tr>
<td>12 (^x)</td>
<td>133,95 ± 20,68</td>
<td>155,33 ± 37,54</td>
<td>129,86 ± 33,35</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)
\(x,y \) indican diferencias significativas entre tiempos de almacenamiento (P≤ 0,05)

Tabla Nº 14: Contenido de \(\gamma \)-tocoferol en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo:

<table>
<thead>
<tr>
<th>TIEMPO (Mes)</th>
<th>Dieta I (Control)(^A)</th>
<th>Dieta II (Exceso de tocoferoles)(^B)</th>
<th>Dieta III (Tocoferoles y extracto de romero)(^B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7,39 ± 2,02</td>
<td>23,90 ± 7,27</td>
<td>19,63 ± 7,55</td>
</tr>
<tr>
<td>3</td>
<td>10,16 ± 6,29</td>
<td>30,82 ± 3,66</td>
<td>25,56 ± 9,80</td>
</tr>
<tr>
<td>6</td>
<td>13,14 ± 7,42</td>
<td>20,75 ± 5,72</td>
<td>14,36 ± 2,93</td>
</tr>
<tr>
<td>9</td>
<td>14,04 ± 5,24</td>
<td>21,80 ± 11,32</td>
<td>14,38 ± 10,59</td>
</tr>
<tr>
<td>12</td>
<td>4,68 ± 1,41</td>
<td>20,31 ± 6,04</td>
<td>13,46 ± 7,72</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)
\(A,B \) indican diferencias significativas entre dietas (P≤ 0,05)
Tabla Nº 15: Contenido de δ-tocoferol en aceite de salmón coho alimentado con las 3 dietas, a través del tiempo:

<table>
<thead>
<tr>
<th>TIEMPO (Mes)</th>
<th>Dieta I (Control)</th>
<th>Dieta II (Exceso de tocoferoles)</th>
<th>Dieta III (Tocoferoles y extracto de romero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,19 ± 0,43</td>
<td>3,12 ± 0,74</td>
<td>1,15 ± 0,68</td>
</tr>
<tr>
<td>3</td>
<td>1,20 ± 1,64</td>
<td>4,06 ± 1,73</td>
<td>6,13 ± 5,52</td>
</tr>
<tr>
<td>6</td>
<td>3,95 ± 7,02</td>
<td>2,15 ± 0,95</td>
<td>1,90 ± 1,76</td>
</tr>
<tr>
<td>9</td>
<td>3,80 ± 5,44</td>
<td>11,39 ± 7,34</td>
<td>0,00 ± 0,00</td>
</tr>
<tr>
<td>12</td>
<td>1,48 ± 3,19</td>
<td>5,66 ± 9,71</td>
<td>0,00 ± 0,00</td>
</tr>
</tbody>
</table>

Los resultados se expresan como la media aritmética ± su desviación estándar (n=5)
ANEXO N°8
CROMATOGRAMAS DEL ESTÁNDAR Y DE UNA MUESTRA PARA LA DETERMINACIÓN DE TOCOFEROLES

Figura N°1: Cromatograma estándar

Figura N°2: Cromatograma de una muestra

Simbología:
- α-T: Alfa tocoferol
- β-T: Beta tocoferol
- γ-T: Gamma tocoferol
- δ-T: Delta tocoferol
- β-T3: Beta tocotrienol
- γ-T3: Gamma tocotrienol
- δ-T3: Delta tocotrienol
ANEXO Nº9
EQUIPOS EMPLEADOS EN ALGUNOS ANÁLISIS DE ESTE ESTUDIO

Figura Nº1: Cromatógrafo HPLC
Figura Nº2: Espectrofotómetro UV-Visible
Figura Nº3: Evaporador rotatorio
Figura Nº4: Equipo Rancimat
Figura Nº5: Homogeneizador celular
Figura Nº6: Digestor de proteínas
Figura N°7: Unidad de destilación

Figura N°8: Bomba de vacío

Figura N°9: Mezclador

Figura N°10: pH-metro

Figura N°11: Mufla

Figura N°12: Balanza analítica